1
|
Shin M, Byun Y. Stereoselective Syntheses of Polyunsaturated Fatty Acids, 13-( S)-HODE and 15-( S)-HETE. J Org Chem 2024; 89:11293-11303. [PMID: 39096279 DOI: 10.1021/acs.joc.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Polyunsaturated fatty acids and their metabolites have been reported in which their pathway has potential for the modulation of cancer cell growth. 13-(S)-HODE and 15-(S)-HETE, both of which are main metabolites of 15-LOXs, play an important role as endogenous ligands in biological systems. However, the modification of 13-(S)-HODE and 15-(S)-HETE in pharmaceutical applications has not been explored widely. Herein, we report the stereoselective syntheses of 13-(S)-HODE, 15-(S)-HETE, and its derivatives to enable the synthesis of bioactive fatty acid analogues.
Collapse
Affiliation(s)
- Myeongsu Shin
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Guiraud M, Ali LMA, Gabrieli-Magot E, Lichon L, Daurat M, Egron D, Gary-Bobo M, Peyrottes S. Probing the Use of Triphenyl Phosphonium Cation for Mitochondrial Nucleoside Delivery. ACS Med Chem Lett 2024; 15:418-422. [PMID: 38505859 PMCID: PMC10945795 DOI: 10.1021/acsmedchemlett.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Herein, we report the design, the synthesis, and the study of novel triphenyl phosphonium-based nucleoside conjugates. 2'-Deoxycytidine was chosen as nucleosidic cargo, as it allows the introduction of fluorescein on the exocyclic amine of the nucleobase and grafting of the vector was envisaged through the formation of a biolabile ester bond with the hydroxyl function at the 5'-position. Compound 3 was identified as a potential nucleoside prodrug, showing ability to be internalized efficiently into cells and to be co-localized with mitochondria.
Collapse
Affiliation(s)
- Mathis Guiraud
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Lamiaa M. A. Ali
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
- Department
of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Emma Gabrieli-Magot
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Laure Lichon
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | | | - David Egron
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Magali Gary-Bobo
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
3
|
Miljkovic JL, Burger N, Gawel JM, Mulvey JF, Norman AAI, Nishimura T, Tsujihata Y, Logan A, Sauchanka O, Caldwell ST, Morris JL, Prime TA, Warrington S, Prudent J, Bates GR, Aksentijević D, Prag HA, James AM, Krieg T, Hartley RC, Murphy MP. Rapid and selective generation of H 2S within mitochondria protects against cardiac ischemia-reperfusion injury. Redox Biol 2022; 55:102429. [PMID: 35961099 PMCID: PMC9382561 DOI: 10.1016/j.redox.2022.102429] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.
Collapse
Affiliation(s)
- Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Justyna M Gawel
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Takanori Nishimura
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Yoshiyuki Tsujihata
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Olga Sauchanka
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Jordan L Morris
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | | | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Georgina R Bates
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Dunja Aksentijević
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
4
|
Mironov VF, Nemtarev AV, Tsepaeva OV, Dimukhametov MN, Litvinov IA, Voloshina AD, Pashirova TN, Titov EA, Lyubina AP, Amerhanova SK, Gubaidullin AT, Islamov DR. Rational Design 2-Hydroxypropylphosphonium Salts as Cancer Cell Mitochondria-Targeted Vectors: Synthesis, Structure, and Biological Properties. Molecules 2021; 26:6350. [PMID: 34770759 PMCID: PMC8588467 DOI: 10.3390/molecules26216350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
It has been shown for a wide range of epoxy compounds that their interaction with triphenylphosphonium triflate occurs with a high chemoselectivity and leads to the formation of (2-hydroxypropyl)triphenylphosphonium triflates 3 substituted in the 3-position with an alkoxy, alkylcarboxyl group, or halogen, which were isolated in a high yield. Using the methodology for the disclosure of epichlorohydrin with alcohols in the presence of boron trifluoride etherate, followed by the substitution of iodine for chlorine and treatment with triphenylphosphine, 2-hydroxypropyltriphenylphosphonium iodides 4 were also obtained. The molecular and supramolecular structure of the obtained phosphonium salts was established, and their high antitumor activity was revealed in relation to duodenal adenocarcinoma. The formation of liposomal systems based on phosphonium salt 3 and L-α-phosphatidylcholine (PC) was employed for improving the bioavailability and reducing the toxicity. They were produced by the thin film rehydration method and exhibited cytotoxic properties. This rational design of phosphonium salts 3 and 4 has promising potential of new vectors for targeted delivery into mitochondria of tumor cells.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Eugenii A. Titov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia;
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Daut R. Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| |
Collapse
|
5
|
Imperio D, Morelli L, Panza L. A Short Method for the Synthesis of Hydroxyoleic Acids. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniela Imperio
- Dipartimento di Scienze del Farmaco Università del Piemonte Orientale Largo Donegani 2 Novara 28100 Italy
| | - Laura Morelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Via Saldini 50 Milan 20133 Italy
| | - Luigi Panza
- Dipartimento di Scienze del Farmaco Università del Piemonte Orientale Largo Donegani 2 Novara 28100 Italy
| |
Collapse
|
6
|
Eibler D, Seyfried C, Vetter W. Enantioselectivity of anteiso-fatty acids in hitherto uninspected sample matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:233-239. [DOI: 10.1016/j.jchromb.2017.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 02/08/2023]
|
7
|
Eibler D, Vetter W. Enantioseparation and optical rotation of flavor-relevant 4-alkyl-branched fatty acids. J Chromatogr A 2017; 1505:87-95. [DOI: 10.1016/j.chroma.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
|
8
|
Eibler D, Abdurahman H, Ruoff T, Kaffarnik S, Steingass H, Vetter W. Unexpected Formation of Low Amounts of (R)-Configurated anteiso-Fatty Acids in Rumen Fluid Experiments. PLoS One 2017; 12:e0170788. [PMID: 28129363 PMCID: PMC5271357 DOI: 10.1371/journal.pone.0170788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/11/2017] [Indexed: 01/26/2023] Open
Abstract
Anteiso-fatty acids (aFA) with odd carbon number are a class of branched-chain fatty acids (BCFA) mainly produced by bacteria. Bacterial sources are also made responsible for their occurrence in the low percent-range in lipids of ruminants (meat and milk) and fish. aFAs are chiral molecules and typically occur predominantly in form of (S)-enantiomers, and their primary precursor has been noted to be isoleucine. Yet, low proportions of (R)-aFAs were also detected in fish and cheese samples. Here we investigated the potential formation of (R)-aFAs by means of incubation experiments with rumen fluid from fistulated cows. Supplementation of rumen fluid with both L- and DL-isoleucine, resulted in a significant (α <0.05) increase of the aFA concentrations but in both cases enantiopure (S)-aFAs were observed. By contrast, incubations without addition of any isoleucine lead to a significant (α <0.05) formation of small proportions of (R)-aFAs similarly to those previously observed in fish and cheese. These results were consistently reproduced in three different years with rumen fluid from different cows fed different diets. All findings point to the existence of a further biosynthesis pathway of aFAs with different stereospecificity than the classic one using isoleucine as primer.
Collapse
Affiliation(s)
- Dorothee Eibler
- University of Hohenheim, Institute of Food Chemistry (170b), Stuttgart, Germany
| | - Halima Abdurahman
- University of Hohenheim, Institute of Food Chemistry (170b), Stuttgart, Germany
| | - Tanja Ruoff
- University of Hohenheim, Institute of Food Chemistry (170b), Stuttgart, Germany
| | - Stefanie Kaffarnik
- University of Hohenheim, Institute of Food Chemistry (170b), Stuttgart, Germany
| | - Herbert Steingass
- University of Hohenheim, Institute of Animal Science (460a), Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Stuttgart, Germany
- * E-mail:
| |
Collapse
|
9
|
Gerő D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, Wood M, Whiteman M. The novel mitochondria-targeted hydrogen sulfide (H 2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 2016; 113:186-198. [PMID: 27565382 PMCID: PMC5113977 DOI: 10.1016/j.phrs.2016.08.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 01/24/2023]
Abstract
The development of diabetic vascular complications is initiated, at least in part, by mitochondrial reactive oxygen species (ROS) production in endothelial cells. Hyperglycemia induces superoxide production in the mitochondria and initiates changes in the mitochondrial membrane potential that leads to mitochondrial dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the mitochondrial oxidant production and shows efficacy against diabetic vascular damage in vivo. However, the half-life of H2S is very short and it is not specific for the mitochondria. We have therefore evaluated two novel mitochondria-targeted anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 respectively) at preventing hyperglycemia-induced oxidative stress and metabolic changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced significant increase in the activity of the citric acid cycle and led to elevated mitochondrial membrane potential. Mitochondrial oxidant production was increased and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and AP123 (30–300 nM) decreased HG-induced hyperpolarisation of the mitochondrial membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30–300 nM) increased the electron transport at respiratory complex III and improved the cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect of H2S against glucose-induced damage in endothelial cells suggesting that the molecular target of H2S action is within the mitochondria. Mitochondrial targeting of H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-induced injury. The high potency and long-lasting effect elicited by these H2S donors strongly suggests that these compounds could be useful against diabetic vascular complications.
Collapse
Affiliation(s)
- Domokos Gerő
- University of Exeter Medical School, Exeter, UK.
| | - Roberta Torregrossa
- University of Exeter Medical School, Exeter, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Alexis Perry
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | - Sophie Le-Trionnaire
- IRSET-UMR INSERM U1085, Equipe 3-Stress, Membrane et Signalisation, Rennes Cedex, France
| | | | - Mark Wood
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | |
Collapse
|
10
|
Eibler D, Seyfried C, Kaffarnik S, Vetter W. anteiso-Fatty Acids in Brussels Sprouts (Brassica oleracea var. gemmifera L.): Quantities, Enantioselectivities, and Stable Carbon Isotope Ratios. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8921-8929. [PMID: 26390192 DOI: 10.1021/acs.jafc.5b03877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
anteiso-Fatty acids (aFAs) are a class of branched-chain fatty acids that are characterized by one methyl branch on the antepenultimate carbon of the straight acyl chain. aFAs are mainly produced by bacteria, and sources in vegetables are scarce. This study reports the concentrations of odd-numbered aFAs (a15:0-a21:0) in Brussels sprout buds. Selective enrichment followed by enantioselective gas chromatography with mass spectrometry in the selected ion monitoring mode revealed that both a15:0 and a17:0 were (S)-enantiopure in Brussels sprout samples. δ(13)C values (‰) of a17:0 in Brussels sprouts were comparable with those of palmitic acid, indicating no different source for both fatty acids.
Collapse
Affiliation(s)
- Dorothee Eibler
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Carolin Seyfried
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Stefanie Kaffarnik
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| |
Collapse
|
11
|
Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 2014; 41:120-30. [PMID: 24755204 DOI: 10.1016/j.niox.2014.04.008] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kazunori Yanagi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sophie Le Trionnaire
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom
| | - Alexis Perry
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom.
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Le Trionnaire S, Perry A, Szczesny B, Szabo C, Winyard PG, Whatmore JL, Wood ME, Whiteman M. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00323j] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is observed in many diseases. Targeting H2S generation to mitochondria may be cytoprotective.
Collapse
Affiliation(s)
| | - Alexis Perry
- Biosciences
- College of Environmental and Life Sciences
- University of Exeter
- Exeter EX4 4QD, UK
| | - Bartosz Szczesny
- Department of Anesthesiology
- University of Texas Medical Branch
- Galveston, USA
| | - Csaba Szabo
- Department of Anesthesiology
- University of Texas Medical Branch
- Galveston, USA
| | - Paul G. Winyard
- University of Exeter Medical School
- St. Luke's Campus
- Exeter EX1 2LU, UK
| | | | - Mark E. Wood
- Biosciences
- College of Environmental and Life Sciences
- University of Exeter
- Exeter EX4 4QD, UK
| | - Matthew Whiteman
- University of Exeter Medical School
- St. Luke's Campus
- Exeter EX1 2LU, UK
| |
Collapse
|
13
|
Patalag LJ, Werz DB. Fluorescent penta- and hexaene fatty acids by a Wittig-Horner/elimination strategy. J Org Chem 2012; 77:5297-304. [PMID: 22616932 DOI: 10.1021/jo300624h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular fluorescent probes have revolutionized biochemical and biophysical studies in the last decades, but with regard to lipids there has been a lack of combining the slim shape of saturated acyl chains with fluorescent properties. Our strategy to pentaene and hexaene fatty acids builds upon commercially available 4-(E)-decenal, which is subjected to a Wittig-Horner reaction after chlorination in α-position. DBU-mediated β-elimination of HCl proceeding the olefination establishes a highly conjugated system to which a salt-free Wittig reaction adds a final double bond leading to a good (Z)-selectivity of 83-86%. The double bond geometry can be optionally isomerized with I(2) to furnish the all-(E)-species. The five conjugated alkene moieties result in a longest-wavelength absorption maximum of about 350 nm. A red-shift to 380 nm was realized by addition of another double bond employing a common Wittig-Horner prolongation sequence. Stokes shifts of about 7300 and 7800 cm(-1), respectively, were observed.
Collapse
Affiliation(s)
- Lukas J Patalag
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | | |
Collapse
|
14
|
Zlatanos S, Laskaridis K, Koliokota E, Sagredos A. Synthesis of the isofatty acid 13-methyl-tetradecanoic acid and its triglyceride. GRASAS Y ACEITES 2011. [DOI: 10.3989/gya.034811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Hauff S, Vetter W. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J Chromatogr A 2010; 1217:8270-8. [DOI: 10.1016/j.chroma.2010.10.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/29/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
16
|
In vivo protection provided by a synthetic new alpha-galactosyl ceramide analog against bacterial and viral infections in murine models. Antimicrob Agents Chemother 2010; 54:4129-36. [PMID: 20660669 DOI: 10.1128/aac.00368-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alpha-galactosyl ceramide (α-GalCer) has been known to bind to the CD1d receptor on dendritic cells and activate invariant natural killer T (iNKT) cells, which subsequently secrete T-helper-cell 1 (Th1) and Th2 cytokines, which correlate with anti-infection activity and the prevention of autoimmune diseases, respectively. α-GalCer elicits the secretion of these two cytokines nonselectively, and thus, its effectiveness is limited by the opposing effects of the Th1 and Th2 cytokines. Reported here is the synthesis of a new α-GalCer analog (compound C34), based on the structure of CD1d, with a 4-(4-fluorophenoxy) phenyl undecanoyl modification of the N-acyl moiety of α-GalCer. Using several murine bacterial and viral infection models, we demonstrated that C34 has superior antibacterial and antiviral activities in comparison with those of several other Th1-selective glycolipids and that it is most effective by administering it to mice in a prophylactic manner before or shortly after infection.
Collapse
|
17
|
Enantioselective Analysis of Chiral Anteiso Fatty Acids in the Polar and Neutral Lipids of Food. Lipids 2010; 45:357-65. [DOI: 10.1007/s11745-010-3400-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
18
|
Hauff S, Rilfors L, Hottinger G, Vetter W. Structure and absolute configuration of an unsaturated anteiso fatty acid from Bacillus megaterium. J Chromatogr A 2010; 1217:1683-7. [DOI: 10.1016/j.chroma.2010.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/03/2010] [Accepted: 01/08/2010] [Indexed: 11/26/2022]
|
19
|
Jenske R, Lindström F, Gröbner G, Vetter W. Impact of free hydroxylated and methyl-branched fatty acids on the organization of lipid membranes. Chem Phys Lipids 2008; 154:26-32. [DOI: 10.1016/j.chemphyslip.2008.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 03/04/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
|
20
|
Vetter W, Gaul S, Thurnhofer S, Mayer K. Stable carbon isotope ratios of methyl-branched fatty acids are different to those of straight-chain fatty acids in dairy products. Anal Bioanal Chem 2007; 389:597-604. [PMID: 17639356 DOI: 10.1007/s00216-007-1438-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/08/2007] [Accepted: 06/15/2007] [Indexed: 11/29/2022]
Abstract
Methyl-branched fatty acids (MBFAs) are the dominant form of fatty acid found in many bacteria. They are also found at low levels in a range of foodstuffs, where their presence has been linked to bacterial sources. In this study we evaluated the potential of compound-specific isotope analysis to obtain insights into the stable carbon isotope ratios (delta(13)C values in per thousand) of individual MBFAs and to compare them to the stable carbon isotope ratios of straight-chain fatty acids in food. Due to their low abundance in foodstuffs, the MBFAs were enriched prior to gas chromatography coupled to isotope ratio mass spectrometric (GC-IRMS) analysis. After transesterification, urea complexation was used to suppress the 16:0 and 18:0 methyl esters that were dominant in the samples. Following that, silver-ion high performance liquid chromatography was used to separate the saturated from the unsaturated fatty acids. The resulting solutions of saturated fatty acids obtained from suet, goat's milk, butter, and human milk were studied by GC-IRMS. The delta(13)C values of fatty acids with 12-17 carbons ranged from -25.4 per thousand to -37.6 per thousand. In all samples, MBFAs were most depleted in carbon-13, followed by the odd-chain fatty acids 15:0 and 17:0. 14:0 and 16:0 contained the highest proportions of carbon-13. The results from this study illustrate that MBFAs have distinctive delta(13)C values and must originate from other sources and/or from very different substrates. These measurements support the initial hypothesis that delta(13)C values can be used to attribute MBFAs to particular sources.
Collapse
Affiliation(s)
- Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, 70593 Stuttgart, Germany.
| | | | | | | |
Collapse
|
21
|
Thurnhofer S, Hottinger G, Vetter W. Enantioselective Determination of Anteiso Fatty Acids in Food Samples. Anal Chem 2007; 79:4696-701. [PMID: 17508720 DOI: 10.1021/ac0702894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anteiso fatty acids (aFAs)-long-chain carboxylic acids with a methyl branch on the (n - 2)-carbon-are among the most simple fatty acids that are chiral. The most frequently occurring aFAs in food are 12-methyltetradecanoic acid (a15:0) and 14-methylhexadecanoic acid (a17:0), structures where the asymmetric carbon is more than 10 carbons separated from the polar head group. Previously, only enantioseparation of 4-methyl-substituted carboxylic fatty acids has been reported by gas chromatography. Here we present the first direct partial enantioresolution of synthesized racemic a15:0-a17:0 on a capillary column coated with 50% heptakis(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin diluted in OV1701. Synthesized (S)-(+)-enantiomers were used to demonstrate that the elution order was (R)- prior to (S)-enantiomers. Using this system, food samples (butter, goat's milk fat, suet, human milk, seal oil, cod liver oil) known to contain aFAs were analyzed. Prior to the enantioselective gas chromatography, unsaturated fatty acids were preseparated by urea complexation, silver ion high performance liquid chromatography (Ag+-HPLC), or both from food samples. The fractions of the food samples enriched with methyl-branched fatty acids were then analyzed by GC/MS in the SIM mode. The measurements confirmed that the (S)-enantiomer of a15:0 (ee >96%), a16:0, and a17:0 (ee >90%, respectively) dominated in all samples. While the (R)-enantiomers could not be identified in samples from ruminants and human milk, their presence could be established in cod liver and seal oil (ee <86%).
Collapse
Affiliation(s)
- Saskia Thurnhofer
- Institute of Food Chemistry, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | | |
Collapse
|