1
|
Site-Specific Fluorescent Labeling of RNA Interior Positions. Molecules 2021; 26:molecules26051341. [PMID: 33802273 PMCID: PMC7959133 DOI: 10.3390/molecules26051341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
The introduction of fluorophores into RNA for both in vitro and in cellulo studies of RNA function and cellular distribution is a subject of great current interest. Here I briefly review methods, some well-established and others newly developed, which have been successfully exploited to site-specifically fluorescently label interior positions of RNAs, as a guide to investigators seeking to apply this approach to their studies. Most of these methods can be applied directly to intact RNAs, including (1) the exploitation of natural posttranslational modifications, (2) the repurposing of enzymatic transferase reactions, and (3) the nucleic acid-assisted labeling of intact RNAs. In addition, several methods are described in which specifically labeled RNAs are prepared de novo.
Collapse
|
2
|
Zhu RY, Majumdar C, Khuu C, De Rosa M, Opresko PL, David SS, Kool ET. Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity. ACS CENTRAL SCIENCE 2020; 6:1735-1742. [PMID: 33145410 PMCID: PMC7596860 DOI: 10.1021/acscentsci.0c00369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 05/04/2023]
Abstract
The human DNA base excision repair enzyme MUTYH (MutY homolog DNA glycosylase) excises undamaged adenine that has been misincorporated opposite the oxidatively damaged 8-oxoG, preventing transversion mutations and serving as an important defense against the deleterious effects of this damage. Mutations in the MUTYH gene predispose patients to MUTYH-associated polyposis and colorectal cancer, and MUTYH expression has been documented as a biomarker for pancreatic cancer. Measuring MUTYH activity is therefore critical for evaluating and diagnosing disease states as well as for testing this enzyme as a potential therapeutic target. However, current methods for measuring MUTYH activity rely on indirect electrophoresis and radioactivity assays, which are difficult to implement in biological and clinical settings. Herein, we synthesize and identify novel fluorescent adenine derivatives that can act as direct substrates for excision by MUTYH as well as bacterial MutY. When incorporated into synthetic DNAs, the resulting fluorescently modified adenine-release turn-on (FMART) probes report on enzymatic base excision activity in real time, both in vitro and in mammalian cells and human blood. We also employ the probes to identify several promising small-molecule modulators of MUTYH by employing FMART probes for in vitro screening.
Collapse
Affiliation(s)
- Ru-Yi Zhu
- Department
of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Chandrima Majumdar
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Cindy Khuu
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Mariarosaria De Rosa
- Department
of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, United States
- Hillman
Cancer Center, University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Patricia L. Opresko
- Department
of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, United States
- Hillman
Cancer Center, University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Sheila S. David
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Eric T. Kool
- Department
of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|
3
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
4
|
Triazolyl C-nucleosides via the intermediacy of β-1′-ethynyl-2′-deoxyribose derived from a Nicholas reaction: Synthesis, photophysical properties and interaction with BSA. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Šišuļins A, Bucevičius J, Tseng YT, Novosjolova I, Traskovskis K, Bizdēna Ē, Chang HT, Tumkevičius S, Turks M. Synthesis and fluorescent properties of N(9)-alkylated 2-amino-6-triazolylpurines and 7-deazapurines. Beilstein J Org Chem 2019; 15:474-489. [PMID: 30873231 PMCID: PMC6404417 DOI: 10.3762/bjoc.15.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
The synthesis of novel fluorescent N(9)-alkylated 2-amino-6-triazolylpurine and 7-deazapurine derivatives is described. A new C(2)-regioselectivity in the nucleophilic aromatic substitution reactions of 9-alkylated-2,6-diazidopurines and 7-deazapurines with secondary amines has been disclosed. The obtained intermediates, 9-alkylated-2-amino-6-azido-(7-deaza)purines, were transformed into the title compounds by CuAAC reaction. The designed compounds belong to the push-pull systems and possess promising fluorescence properties with quantum yields in the range from 28% to 60% in acetonitrile solution. Due to electron-withdrawing properties of purine and 7-deazapurine heterocycles, which were additionally extended by triazole moieties, the compounds with electron-donating groups showed intramolecular charge transfer character (ICT/TICT) of the excited states which was proved by solvatochromic dynamics and supported by DFT calculations. In the 7-deazapurine series this led to increased fluorescence quantum yield (74%) in THF solution. The compounds exhibit low cytotoxicity and as such are useful for the cell labelling studies in the future.
Collapse
Affiliation(s)
- Andrejs Šišuļins
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Jonas Bucevičius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Irina Novosjolova
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Kaspars Traskovskis
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Ērika Bizdēna
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Sigitas Tumkevičius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| |
Collapse
|
6
|
Yamashige R, Kimoto M, Okumura R, Hirao I. Visual Detection of Amplified DNA by Polymerase Chain Reaction Using a Genetic Alphabet Expansion System. J Am Chem Soc 2018; 140:14038-14041. [PMID: 30336010 DOI: 10.1021/jacs.8b08121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Visual DNA amplification using a simple polymerase chain reaction (PCR) device is useful for field tests to detect target DNA and RNA. We hereby describe a detection system involving PCR amplification visualized with the naked eye, by genetic alphabet expansion. The system employs fluorescence resonance energy transfer (FRET) between unnatural base combinations: self-quenched dinucleotides of 2-amino-6-(2-thienyl)purine (s) as a donor and Cy3-conjugated 2-nitro-4-propynylpyrrole (Cy3-hx-Px) as an acceptor. During PCR, the triphosphate substrate of Cy3-hx-Px (Cy3-hx-dPxTP) is incorporated into DNA opposite its pairing partner, 7-(2-thienyl)-imidazo[4,5- b]pyridine (Ds), in the primer, which also contains the dinucleotides of s. Thus, the amplified DNA can be visualized by the Cy3 fluorescence resulting from the FRET between the s-dinucleotides and the incorporated Cy3-hx-Px upon 365 nm irradiation. Using this system, we demonstrated the visual single nucleotide polymorphism detection of a series of quinolone-resistant bacteria genes.
Collapse
Affiliation(s)
- Rie Yamashige
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Michiko Kimoto
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan.,Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669 , Singapore
| | - Ryo Okumura
- Rare Disease Laboratories, Group I, R&D Division , Daiichi Sankyo Co. Ltd. , 1-2-58 Hiromachi , Shinagawa-ku , Tokyo 140-8710 Japan
| | - Ichiro Hirao
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan.,Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669 , Singapore
| |
Collapse
|
7
|
Hamashima K, Kimoto M, Hirao I. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology. Curr Opin Chem Biol 2018; 46:108-114. [PMID: 30059833 DOI: 10.1016/j.cbpa.2018.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023]
Abstract
Artificial extra base pairs (unnatural base pairs, UBPs) expand the genetic alphabet of DNA, thus broadening entire biological systems in the central dogma. UBPs function as third base pairs in replication, transcription, and/or translation, and have created a new research area, synthetic xenobiology, providing genetic engineering tools to generate novel DNAs, RNAs, and proteins with increased functionalities. Several UBPs have been developed and applied to PCR technology, DNA aptamer generation, and semi-synthetic organism creation. Among them, we developed a series of UBPs and demonstrated unique quantitative PCR and high-affinity DNA aptamer generation methods.
Collapse
Affiliation(s)
- Kiyofumi Hamashima
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.
| |
Collapse
|
8
|
Li Z, Zhu J, He J. Conformational studies of 10-23 DNAzyme in solution through pyrenyl-labeled 2'-deoxyadenosine derivatives. Org Biomol Chem 2018; 14:9846-9858. [PMID: 27714317 DOI: 10.1039/c6ob01702a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
10-23 DNAzyme is a small catalytic DNA molecule. Studies on its conformation in solution are critical for understanding its catalytic mechanism and functional optimization. Based on our previous research, two fluorescent nucleoside analogues 1 and 2 were designed for the introduction of a pyrenyl group at one of the five dA residues in the catalytic core and the unpaired adenosine residue in its full-DNA substrate, respectively. Ten pyrenyl-pyrenyl pairs are formed in the DNAzyme-substrate complexes in solution for sensing the spacial positions of the five dA residues relative to the cleavage site using fluorescence spectra. The position-dependent quenching effect of pyrene emission fluorescence by nucleobases, especially the pyrenyl-pyrenyl interaction, was observed for some positions. The adenine residues in the 3'-part of the catalytic loop seem to be closer to the cleavage site than the adenine residues in the 5'-part, which is consistent with the molecular dynamics simulation result. The catalytic activities and Tm changes also confirmed the effect of the pyrenyl-nucleobase and pyrenyl-pyrenyl pair interactions. Together with functional group mutations, catalytically relevant nucleobases will be identified for understanding the catalytic mechanism of 10-23 DNAzyme.
Collapse
Affiliation(s)
- Zhiwen Li
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junfei Zhu
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
9
|
Fluorescent nucleobases as tools for studying DNA and RNA. Nat Chem 2017; 9:1043-1055. [PMID: 29064490 DOI: 10.1038/nchem.2859] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Understanding the diversity of dynamic structures and functions of DNA and RNA in biology requires tools that can selectively and intimately probe these biomolecules. Synthetic fluorescent nucleobases that can be incorporated into nucleic acids alongside their natural counterparts have emerged as a powerful class of molecular reporters of location and environment. They are enabling new basic insights into DNA and RNA, and are facilitating a broad range of new technologies with chemical, biological and biomedical applications. In this Review, we will present a brief history of the development of fluorescent nucleobases and explore their utility as tools for addressing questions in biophysics, biochemistry and biology of nucleic acids. We provide chemical insights into the two main classes of these compounds: canonical and non-canonical nucleobases. A point-by-point discussion of the advantages and disadvantages of both types of fluorescent nucleobases is made, along with a perspective into the future challenges and outlook for this burgeoning field.
Collapse
|
10
|
Ozols K, Cīrule D, Novosjolova I, Stepanovs D, Liepinsh E, Bizdēna Ē, Turks M. Development of N6-methyl-2-(1,2,3-triazol-1-yl)-2′-deoxyadenosine as a novel fluorophore and its application in nucleotide synthesis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
|
12
|
Abstract
The past several years have seen numerous reports of new chemical modifications for use in RNA. In addition, in that time period, we have seen the discovery of several previously unknown naturally occurring modifications that impart novel properties on the parent RNAs. In this review, we describe recent discoveries in these areas with a focus on RNA modifications that introduce spectroscopic tags, reactive handles, or new recognition properties.
Collapse
Affiliation(s)
- Kelly Phelps
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Alexi Morris
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Peter A. Beal
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
13
|
Schlitt KM, Millen AL, Wetmore SD, Manderville RA. An indole-linked C8-deoxyguanosine nucleoside acts as a fluorescent reporter of Watson-Crick versus Hoogsteen base pairing. Org Biomol Chem 2011; 9:1565-71. [PMID: 21240404 DOI: 10.1039/c0ob00883d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrrole- and indole-linked C(8)-deoxyguanosine nucleosides act as fluorescent reporters of H-bonding specificity. Their fluorescence is quenched upon Watson-Crick H-bonding to dC, while Hoogsteen H-bonding to G enhances emission intensity. The indole-linked probe is ∼ 10-fold brighter and shows promise as a fluorescent reporter of Hoogsteen base pairing.
Collapse
Affiliation(s)
- Katherine M Schlitt
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
14
|
Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Nat Protoc 2010; 5:1312-23. [DOI: 10.1038/nprot.2010.77] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Preus S, Kilså K, Wilhelmsson LM, Albinsson B. Photophysical and structural properties of the fluorescent nucleobase analogues of the tricyclic cytosine (tC) family. Phys Chem Chem Phys 2010; 12:8881-92. [PMID: 20532361 DOI: 10.1039/c000625d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fundamental insight into the unique fluorescence and nucleobase-mimicking properties of the fluorescent nucleobase analogues of the tC family is not only vital in explaining the behaviour of these probes in nucleic acid environments, but will also be profitable in the development of new and improved fluorescent base analogues. Here, temperature-dependent fluorescence quantum yield measurements are used to successfully separate and quantify the temperature-dependent and temperature-independent non-radiative excited-state decay processes of the three nucleobase analogues tC, tC(O) and tC(nitro); all of which are derivatives of a phenothiazine or phenoxazine tricyclic framework. These results strongly suggest that the non-radiative decay process dominating the fast deactivation of tC(nitro) is an internal conversion of a different origin than the decay pathways of tC and tC(O). tC(nitro) is reported to be fluorescent only in less dipolar solvents at room temperature, which is explained by an increase in excited-state dipole moment along the main non-radiative decay pathway, a suggestion that applies in the photophysical discussion of large polycyclic nitroaromatics in general. New insight into the ground and excited-state potential energy surfaces of the isolated tC bases is obtained by means of high level DFT and TDDFT calculations. The S(0) potential energy surfaces of tC and tC(nitro) possess two global minima corresponding to geometries folded along the middle sulfur-nitrogen axis separated by an energy barrier of 0.05 eV as calculated at the B3LYP/6-311+G(2d,p) level. The ground-state potential energy surface of tC(O) is also predicted to be shallow along the bending coordinate but with an equilibrium geometry corresponding to the planar conformation of the tricyclic framework, which may explain some of the dissimilar properties of tC and tC(O) in various confined (biological) environments. The S(1) equilibrium geometries of all three base analogues are predicted to be planar. These results are discussed in the context of the tC bases positioned in double-stranded DNA scenarios.
Collapse
Affiliation(s)
- Søren Preus
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
16
|
Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 2010; 110:2579-619. [PMID: 20205430 PMCID: PMC2868948 DOI: 10.1021/cr900301e] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Renatus W. Sinkeldam
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| | | | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
17
|
Abstract
The enzymatic incorporation of a series of emissive pyrimidine analogues into RNA oligonucleotides is explored. T7 RNA polymerase is challenged with accepting three non-natural, yet related, triphosphates as substrates and incorporating them into diverse RNA transcripts. The three ribonucleoside triphosphates differ only in the modification of their uracil nucleus and include a thieno[3,2-d]pyrimidine nucleoside, a thieno[3,4-d]pyrimidine derivative, and a uridine containing a thiophene ring conjugated at its 5-position. All thiophene-containing uridine triphosphates (UTPs) get incorporated into RNA oligonucleotides at positions that are remote to the promoter, although the yields of the transcripts vary compared with the transcript obtained with only native triphosphates. Among the three derivatives, the 5-modified UTP is found to be the most "polymerase-friendly" and is well accommodated by T7 RNA polymerase. Although the fused thiophene analogues cannot be incorporated next to the promoter region, the 5-modified non-natural UTP gets incorporated near the promoter (albeit in relatively low yields) and even in multiple copies. Labeling experiments shed light on the mediocre incorporation of the fused analogues, suggesting the enzyme frequently pauses at the incorporation position. When incorporation does take place, the enzyme fails to elongate the modified oligonucleotide and yields aborted transcripts. Taken together, these results highlight the versatility and robustness, as well as the scope and limitation, of T7 RNA polymerase in accepting and incorporating reporter nucleotides into modified RNA transcripts.
Collapse
Affiliation(s)
- Seergazhi G Srivatsan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
18
|
Butler RS, Cohn P, Tenzel P, Abboud KA, Castellano RK. Synthesis, Photophysical Behavior, and Electronic Structure of Push−Pull Purines. J Am Chem Soc 2008; 131:623-33. [DOI: 10.1021/ja806348z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roslyn S. Butler
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Pamela Cohn
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Phillip Tenzel
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Khalil A. Abboud
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| |
Collapse
|
19
|
Kimoto M, Mitsui T, Harada Y, Sato A, Yokoyama S, Hirao I. Fluorescent probing for RNA molecules by an unnatural base-pair system. Nucleic Acids Res 2007; 35:5360-9. [PMID: 17693436 PMCID: PMC2018647 DOI: 10.1093/nar/gkm508] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fluorescent labeling of nucleic acids is widely used in basic research and medical applications. We describe the efficient site-specific incorporation of a fluorescent base analog, 2-amino-6-(2-thienyl)purine (s), into RNA by transcription mediated by an unnatural base pair between s and pyrrole-2-carbaldehyde (Pa). The ribonucleoside 5′-triphosphate of s was site-specifically incorporated into RNA, by T7 RNA polymerase, opposite Pa in DNA templates. The fluorescent intensity of s in RNA molecules changes according to the structural environment. The site-specific s labeling of RNA hairpins and tRNA molecules provided characteristic fluorescent profiles, depending on the labeling sites, temperature and Mg2+ concentration. The Pa-containing DNA templates can be amplified by PCR using 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), another pairing partner of Pa. This site-specific fluorescent probing by the unnatural pair system including the s-Pa and Ds-Pa pairs provides a powerful tool for studying the dynamics of the local structural features of 3D RNA molecules and their intra- and intermolecular interactions.
Collapse
Affiliation(s)
- Michiko Kimoto
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | - Tsuneo Mitsui
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | - Yoko Harada
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | - Akira Sato
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | - Shigeyuki Yokoyama
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | - Ichiro Hirao
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
- *To whom correspondence should be addressed. +81 45 503 9644+81 45 503 9645
| |
Collapse
|
20
|
|
21
|
Greco NJ, Tor Y. Furan Decorated Nucleoside Analogues as Fluorescent Probes: synthesis, photophysical evaluation and site-specific incorporation. Tetrahedron 2007; 63:3515-3527. [PMID: 18431439 DOI: 10.1016/j.tet.2007.01.073] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The synthesis and photophysical evaluation of modified nucleoside analogues in which a five-membered heterocycle (furan, thiophene, oxazole and thiazole) is attached to the 5 position of 2'-deoxyuridine are reported. The furan containing derivative is identified as the most promising responsive nucleoside of this family due to its emission quantum efficiency and degree of sensitivity to its microenvironment. The furan moiety was then attached to the 5 position of 2'-deoxycytidine as well as the 8 position of adenosine and guanosine. Photophysical evaluation of these four furan containing nucleoside analogues reveal distinct differences in the absorption, emission and quantum efficiency depending upon the class of nucleoside (pyrimidine or purine). Comparing the photophysical properties of all furan containing nucleosides, identifies the furan thymidine analogue, 5-(fur-2-yl)-2'-deoxyuridine, as the best candidate for use as a responsive fluorescent probe in nucleic acids. 5-(fur-2-yl)-2'-deoxyuridine was then converted to the corresponding phosphoramidite and site specifically incorporated into DNA oligonucleotides with greater than 88% coupling efficiency. Such furan-modified oligonucleotides form stable duplexes upon hybridization to their complementary DNA strands and display favorable fluorescent features.
Collapse
Affiliation(s)
- Nicholas J Greco
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|