1
|
Yang S, Yuan H, Guo K, Wei Z, Ming M, Yi J, Jiang L, Han Z. Fluorinated chlorin chromophores for red-light-driven CO 2 reduction. Nat Commun 2024; 15:5704. [PMID: 38977670 PMCID: PMC11231220 DOI: 10.1038/s41467-024-50084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
The utilization of low-energy photons in light-driven reactions is an effective strategy for improving the efficiency of solar energy conversion. In nature, photosynthetic organisms use chlorophylls to harvest the red portion of sunlight, which ultimately drives the reduction of CO2. However, a molecular system that mimics such function is extremely rare in non-noble-metal catalysis. Here we report a series of synthetic fluorinated chlorins as biomimetic chromophores for CO2 reduction, which catalytically produces CO under both 630 nm and 730 nm light irradiation, with turnover numbers of 1790 and 510, respectively. Under appropriate conditions, the system lasts over 240 h and stays active under 1% concentration of CO2. Mechanistic studies reveal that chlorin and chlorinphlorin are two key intermediates in red-light-driven CO2 reduction, while corresponding porphyrin and bacteriochlorin are much less active forms of chromophores.
Collapse
Affiliation(s)
- Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China
| | - Kai Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China
| | - Zuting Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China
- School of Materials Science and Engineering, Xihua University, Chengdu, China
| | - Jinzhi Yi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Nguyen KU, Zhang Y, Liu Q, Zhang R, Jin X, Taniguchi M, Miller ES, Lindsey JS. Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review. Molecules 2023; 28:6132. [PMID: 37630384 PMCID: PMC10459692 DOI: 10.3390/molecules28166132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA;
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| |
Collapse
|
3
|
Chau Nguyen K, Nguyen Tran AT, Wang P, Zhang S, Wu Z, Taniguchi M, Lindsey JS. Four Routes to 3-(3-Methoxy-1,3-dioxopropyl)pyrrole, a Core Motif of Rings C and E in Photosynthetic Tetrapyrroles. Molecules 2023; 28:molecules28031323. [PMID: 36770988 PMCID: PMC9920783 DOI: 10.3390/molecules28031323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The photosynthetic tetrapyrroles share a common structural feature comprised of a β-ketoester motif embedded in an exocyclic ring (ring E). As part of a total synthesis program aimed at preparing native structures and analogues, 3-(3-methoxy-1,3-dioxopropyl)pyrrole was sought. The pyrrole is a precursor to analogues of ring C and the external framework of ring E. Four routes were developed. Routes 1-3 entail a Pd-mediated coupling process of a 3-iodopyrrole with potassium methyl malonate, whereas route 4 relies on electrophilic substitution of TIPS-pyrrole with methyl malonyl chloride. Together, the four routes afford considerable latitude. A long-term objective is to gain the capacity to create chlorophylls and bacteriochlorophylls and analogues thereof by facile de novo means for diverse studies across the photosynthetic sciences.
Collapse
|
4
|
Taniguchi M, Bocian DF, Holten D, Lindsey JS. Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Sun R, Liu M, Zheng SL, Dogutan DK, Costentin C, Nocera DG. Proton-coupled electron transfer of macrocyclic ring hydrogenation: The chlorinphlorin. Proc Natl Acad Sci U S A 2022; 119:e2122063119. [PMID: 35533271 PMCID: PMC9171799 DOI: 10.1073/pnas.2122063119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe chemical reduction of unsaturated bonds occurs by hydrogenation with H2 as the reductant. Conversely, in biology, the unavailability of H2 engenders the typical reduction of unsaturated bonds with electrons and protons from different cofactors, requiring olefin hydrogenation to occur by proton-coupled electron transfer (PCET). Moreover, the redox noninnocence of tetrapyrrole macrocycles furnishes unusual PCET intermediates, including the phlorin, which is an intermediate in tetrapyrrole ring reductions. Whereas the phlorin of a porphyrin is well established, the phlorin of a chlorin is enigmatic. By controlling the PCET reactivity of a chlorin, including the use of a hangman functionality to manage the proton transfer, the formation of a chlorinphlorin by PCET is realized, and the mechanism for its formation is defined.
Collapse
Affiliation(s)
- Rui Sun
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Mengran Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Dilek K. Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Cyrille Costentin
- Université Grenoble Alpes, CNRS, Grenoble, 38000 France
- Université Paris Cité, Paris, 75013 France
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
6
|
Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Babu B, Mack J, Nyokong T. Photodynamic activity of Sn(IV) tetrathien-2-ylchlorin against MCF-7 breast cancer cells. Dalton Trans 2021; 50:2177-2182. [PMID: 33496304 DOI: 10.1039/d0dt03958f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new readily-synthesized Sn(iv) tetraarylchlorin with thien-2-yl substituents (SnC) has been prepared and fully characterized by various spectroscopic techniques and its photophysical and photochemical properties, such as the singlet oxygen quantum yield (ΦΔ), fluorescence quantum yield (ΦF), triplet lifetime (τT) and photostability, have been evaluated. SnC has an unusually high ΦΔ value of 0.89 in DMF. Studies on the photodynamic activity against MCF-7 breast cancer cells exhibited a very low IC50 value of 0.9 μM and high phototoxicity (dark versus light) indices of >27.8 after irradiation with a 660 nm Thorlabs LED (280 mW cm-2). The results demonstrate that Sn(iv) tetraarylchlorins of this type are suitable candidates for further in-depth PDT studies.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
8
|
Dukh M, Tabaczynski WA, Seetharaman S, Ou Z, Kadish KM, D'Souza F, Pandey RK. meso
‐ and β‐Pyrrole‐Linked Chlorin‐Bacteriochlorin Dyads for Promoting Far‐Red FRET and Singlet Oxygen Production. Chemistry 2020; 26:14996-15006. [DOI: 10.1002/chem.202003042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Mykhaylo Dukh
- PDT Center Cell Stress Biology Roswell Park Cancer Institute Buffalo NY 14263 USA
| | | | - Sairaman Seetharaman
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Zhongping Ou
- Department of Chemistry University of Houston Houston TX 77204 USA
| | - Karl M. Kadish
- Department of Chemistry University of Houston Houston TX 77204 USA
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Ravindra K. Pandey
- PDT Center Cell Stress Biology Roswell Park Cancer Institute Buffalo NY 14263 USA
| |
Collapse
|
9
|
Matsumoto N, Taniguchi M, Lindsey JS. Bioconjugatable synthetic chlorins rendered water-soluble with three PEG-12 groups via click chemistry. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chlorins provide many ideal features for use as red-region fluorophores but require molecular tailoring for solubilization in aqueous solution. A chlorin building-block bearing 18,18-dimethyl, 15-bromo and 10-[2,4,6-tris(propargyloxy)phenyl] substituents has been transformed via click chemistry with CH3(OCH2CH[Formula: see text]-N3 followed by Suzuki coupling with 3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoic acid, thereby installing a water-solubilization motif and a bioconjugatable handle, respectively. In toluene, [Formula: see text]-dimethylformamide (DMF) or water, the resulting facially encumbered free base chlorin exhibits characteristic chlorin absorption ([Formula: see text] [Formula: see text]412, 643 nm) and fluorescence ([Formula: see text] [Formula: see text]645 nm) spectra with only modest variation in fluorescence quantum yield ([Formula: see text] values (0.24, 0.25 and 0.19, respectively). The zinc chlorin derived therefrom exhibits similar spectral constancy ([Formula: see text] [Formula: see text]414 and 613 nm, [Formula: see text] [Formula: see text]616 nm) and [Formula: see text] 0.094, 0.10 and 0.086 in the three solvents. The results together indicate the viability of the molecular design and synthetic methodology to create red-region fluorophores for use in diverse applications.
Collapse
Affiliation(s)
- Nobuyuki Matsumoto
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
10
|
Arkhypchuk AI, Xiong R, Borbas KE. Investigation of the demetallation of 10-aryl substituted synthetic chlorins under acidic conditions. J Inorg Biochem 2020; 205:110979. [PMID: 31951912 DOI: 10.1016/j.jinorgbio.2019.110979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 11/30/2022]
Abstract
The acidic demetallation of a series of sparsely substituted Zn(II) chlorins is reported. The chlorins were functionalized in the 10-position with substituents ranging from strongly electron donating mesityl and p-methoxyphenyl to electron-withdrawing p-nitrophenyl and pentafluorophenyl groups. The demetallation kinetics were investigated using UV-Visible absorption spectroscopy. Demetallation was carried out by exposing the metallochlorins dissolved in CH2Cl2 to an excess of trifluoroacetic acid. Reasonable correlation was found between the Hammett constant of the 10-substituent and the rate constant of the loss of the metal ion. The largest differences were observed between the p-methoxyphenyl and p-nitrophenyl-substituted Zn(II) chlorins, undergoing loss of Zn(II) with pseudo first order rate constants of 0.0789 × 10-3 and 3.70 × 10-3 min-1, respectively. Taken together, these data establish the dramatic influence even subtle changes can have in altering the electronic properties of chlorins, which in turn impacts metallochlorin function.
Collapse
Affiliation(s)
- Anna I Arkhypchuk
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - Ruisheng Xiong
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - K Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden.
| |
Collapse
|
11
|
Kobayashi T, Sugaya K, Onose JI, Abe N. Peppermint ( Mentha piperita L.) extract effectively inhibits cytochrome P450 3A4 (CYP3A4) mRNA induction in rifampicin-treated HepG2 cells. Biosci Biotechnol Biochem 2019; 83:1181-1192. [PMID: 31032736 DOI: 10.1080/09168451.2019.1608802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Interaction between foods and drugs is an important consideration in pharmaceutical therapy. Therefore, here, we examined the suppressive effects of the extracts from seven edible herbs on the induction of CYP3A4 gene expression in rifampicin-treated HepG2 cells. We evaluated the structure and suppressive activity of the most effective active compound isolated from dried peppermint (Mentha piperita L.). The structure of the compound was identified as that of pheophorbide a based on spectroscopic data. It suppressed the induction of CYP3A4 mRNA expression by rifampicin in a dose-dependent manner. Quantitative high-performance liquid chromatography showed that 2 g of dry leaves 0.43 mg in one cup of peppermint tea. These findings demonstrate that pheophorbide a suppresses the induction of CYP3A4 mRNA expression in rifampicin-treated HepG2 cells. Pheophorbide is known to cause photosensitivity. However, the effective dose of pheophorbide a that had a suppressive effect was very low, indicating a high safety margin. Abbreviations: DAD: diode array detector; DMEM: Dulbecco's modified Eagle's medium; ELISA: enzyme-linked immunosorbent assay; HPLC: high-performance liquid chromatography; PCR: polymerase chain reaction; PXR: pregnane X receptor; CAR: constitutive androstane receptor; AHR: aryl hydrocarbon receptor; TLC: thin-layer chromatography.
Collapse
Affiliation(s)
- Tsukasa Kobayashi
- a Department of Nutritional Science and Food Safety, Faculty of Applied Bio-Science , Tokyo University of Agriculture , Tokyo , Japan.,b Department of pharmacology , St. Marianna University School of Medicine , Kawasaki , Japan
| | - Kouichi Sugaya
- a Department of Nutritional Science and Food Safety, Faculty of Applied Bio-Science , Tokyo University of Agriculture , Tokyo , Japan
| | - Jun-Ichi Onose
- a Department of Nutritional Science and Food Safety, Faculty of Applied Bio-Science , Tokyo University of Agriculture , Tokyo , Japan
| | - Naoki Abe
- a Department of Nutritional Science and Food Safety, Faculty of Applied Bio-Science , Tokyo University of Agriculture , Tokyo , Japan
| |
Collapse
|
12
|
Gibbons D, Flanagan KJ, Pounot L, Senge MO. Structure and conformation of photosynthetic pigments and related compounds. 15. Conformational analysis of chlorophyll derivatives – implications for hydroporphyrinsin vivo. Photochem Photobiol Sci 2019; 18:1479-1494. [DOI: 10.1039/c8pp00500a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Controlling the function of chlorophylls depends in part on their 3D conformation. The NSD program presents a powerful tool to identify the distortion modes in phytochlorins.
Collapse
Affiliation(s)
- Dáire Gibbons
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Keith J. Flanagan
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Léa Pounot
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Mathias O. Senge
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| |
Collapse
|
13
|
Esemoto NN, Satraitis A, Wiratan L, Ptaszek M. Symmetrical and Nonsymmetrical Meso-Meso Directly Linked Hydroporphyrin Dyads: Synthesis and Photochemical Properties. Inorg Chem 2018; 57:2977-2988. [PMID: 29140088 DOI: 10.1021/acs.inorgchem.7b02200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of a rigid meso-meso directly linked chlorin-chlorin, chlorin-bacteriochlorin, and bacteriochlorin-bacteriochlorin dyads, including free bases as well as Zn(II), Pd(II), and Cu(II) complexes, has been synthesized, and their absorption, emission, singlet oxygen (1O2) photosensitization, and electronic properties have been examined. Marked bathochromic shifts of the long-wavelength Q y absorption band and increase in fluorescence quantum yields in dyads, in comparison to the corresponding monomers, are observed. Nonsymmetrical dyads (except bacteriochlorin-bacteriochlorin) show two distinctive Q y bands, corresponding to the absorption of each dyad component. A nearly quantitative S1-S1 energy transfer between hydroporphyrins in dyads, leading to an almost exclusive emission of hydroporphyrin with a lower S1 energy, has been determined. Several symmetrical and all nonsymmetrical dyads exhibit a significant reduction in fluorescence quantum yields in solvents of high dielectric constants; this is attributed to the photoinduced electron transfer. The complexation of one macrocycle by Cu(II) or Pd(II) enhances intersystem crossing in the adjacent, free base dyad component, which is manifested by a significant reduction in fluorescence and increase in quantum yield of 1O2 photosensitization.
Collapse
Affiliation(s)
- Nopondo N Esemoto
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| | - Linda Wiratan
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| |
Collapse
|
14
|
Zhang A, Stillman MJ. Exploring function activated chlorins using MCD spectroscopy and DFT methods: design of a chlorin with a remarkably intense, red Q band. Phys Chem Chem Phys 2018; 20:12470-12482. [DOI: 10.1039/c8cp01010b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fictive β-substituted fluorene-thiophene Zn chlorins exhibit exceptionally intense, red Q bands with unusually small ΔHOMO.
Collapse
Affiliation(s)
- Angel Zhang
- Stillman Bioinorganic Group
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Martin J. Stillman
- Stillman Bioinorganic Group
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
15
|
Xiong R, Bornhof A, Arkhypchuk AI, Orthaber A, Borbas KE. Furan- and Thiophene-Based Auxochromes Red-shift Chlorin Absorptions and Enable Oxidative Chlorin Polymerizations. Chemistry 2017; 23:4089-4095. [PMID: 27859811 PMCID: PMC5396321 DOI: 10.1002/chem.201604655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 11/08/2022]
Abstract
The de novo syntheses of chemically stable chlorins with five-membered heterocyclic (furane, thiophene, formylfurane and formylthiophene) substituents in selected meso- and β-positions are reported. Heterocycle incorporation in the 3- and 13-positions shifted the chlorin absorption and emission to the red (up to λem =680 nm), thus these readily incorporated substituents function analogously to auxochromes present in chlorophylls, for example, formyl and vinyl groups. Photophysical, theoretical and X-ray crystallographic experiments revealed small but significant differences between the behavior of the furan- and the thiophene-based auxochromes. Four regioisomeric bis-thienylchlorins (3,10; 3,13, 3,15 and 10,15) were oxidatively electropolymerized; the chlorin monomer geometry had a profound impact on the polymerization efficiency and the electrochemical properties of the resulting material. Chemical co-polymerization of 3,13-bis-thienylchlorin with 3-hexylthiophene yielded an organic-soluble red-emitting polymer.
Collapse
Affiliation(s)
- Ruisheng Xiong
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - Anna‐Bea Bornhof
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - Anna I. Arkhypchuk
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - Andreas Orthaber
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - K. Eszter Borbas
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| |
Collapse
|
16
|
Arkhypchuk AI, Orthaber A, Borbas KE. Synthesis and Characterization of Ferrocenyl Chlorins, 1,1′-Ferrocene-Linked Chlorin Dimers, and their BODIPY Analogues. Inorg Chem 2017; 56:3044-3054. [DOI: 10.1021/acs.inorgchem.6b03158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna I. Arkhypchuk
- Department of Chemistry, Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
17
|
Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Taniguchi M, Lindsey JS. Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins. Chem Rev 2016; 117:344-535. [DOI: 10.1021/acs.chemrev.5b00696] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
19
|
Liu M, Chen CY, Mandal AK, Chandrashaker V, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS. Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Red-Emitting Chlorins. NEW J CHEM 2016; 40:7721-7740. [PMID: 28154477 DOI: 10.1039/c6nj01154c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromophores that absorb and emit in the red spectral region (600-700 nm), are water soluble, and bear a bioconjugatable tether are relatively rare yet would fulfill many applications in photochemistry and photomedicine. Here, three molecular designs have been developed wherein stable synthetic chlorins - analogues of chlorophylls - have been tailored with PEG groups for use in aqueous solution. The designs differ with regard to order of the installation (pre/post-formation of the chlorin macrocycle) and position of the PEG groups. Six PEGylated synthetic chlorins (three free bases, three zinc chelates) have been prepared, of which four are equipped with a bioconjugatable (carboxylic acid) tether. The most effective design for aqueous solubilization entails facial encumbrance where PEG groups project above and below the plane of the hydrophobic disk-like chlorin macrocycle. The chlorins possess strong absorption at ~400 nm (B band) and in the red region (Qy band); regardless of wavelength of excitation, emission occurs in the red region. Excitation in the ~400 nm region thus provides an effective Stokes shift of >200 nm. The four bioconjugatable water-soluble chlorins exhibit Qy absorption/emission in water at 613/614, 636/638, 698/700 and 706/710 nm. The spectral properties are essentially unchanged in DMF and water for the facially encumbered chlorins, which also exhibit narrow Qy absorption and emission bands (full-width-at-half maximum of each <25 nm). The water-solubility was assessed by absorption spectroscopy over the concentration range ~0.4 μM - 0.4 mM. One chlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The conjugate displayed a sharp signal when excited by a violet laser (405 nm) with emission in the 620-660 nm range. Taken together, the designs described herein augur well for development of a set of spectrally distinct chlorins with relatively sharp bands in the red region.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Amit Kumar Mandal
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | | | | | | | - David F Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| |
Collapse
|
20
|
Xiong R, Arkhypchuk AI, Kovacs D, Orthaber A, Eszter Borbas K. Directly linked hydroporphyrin dimers. Chem Commun (Camb) 2016; 52:9056-8. [DOI: 10.1039/c6cc00516k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis and chemical, photophysical and electrochemical characterisation of directly meso–meso- or meso-β-linked hydroporphyrin (chlorin) dimers is reported.
Collapse
Affiliation(s)
- Ruisheng Xiong
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Anna I. Arkhypchuk
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Daniel Kovacs
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Andreas Orthaber
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - K. Eszter Borbas
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
21
|
Sahin T, Harris MA, Vairaprakash P, Niedzwiedzki DM, Subramanian V, Shreve AP, Bocian DF, Holten D, Lindsey JS. Self-Assembled Light-Harvesting System from Chromophores in Lipid Vesicles. J Phys Chem B 2015; 119:10231-43. [PMID: 26230425 DOI: 10.1021/acs.jpcb.5b04841] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid vesicles are used as the organizational structure of self-assembled light-harvesting systems. Following analysis of 17 chromophores, six were selected for inclusion in vesicle-based antennas. The complementary absorption features of the chromophores span the near-ultraviolet, visible, and near-infrared region. Although the overall concentration of the pigments is low (~1 μM for quantitative spectroscopic studies) in a cuvette, the lipid-vesicle system affords high concentration (≥10 mM) in the bilayer for efficient energy flow from donor to acceptor. Energy transfer was characterized in 13 representative binary mixtures using static techniques (fluorescence-excitation versus absorptance spectra, quenching of donor fluorescence, modeling emission spectra of a mixture versus components) and time-resolved spectroscopy (fluorescence, ultrafast absorption). Binary donor-acceptor systems that employ a boron-dipyrrin donor (S0 ↔ S1 absorption/emission in the blue-green) and a chlorin or bacteriochlorin acceptor (S0 ↔ S1 absorption/emission in the red or near-infrared) have an average excitation-energy-transfer efficiency (ΦEET) of ~50%. Binary systems with a chlorin donor and a chlorin or bacteriochlorin acceptor have ΦEET ∼ 85%. The differences in ΦEET generally track the donor-fluorescence/acceptor-absorption spectral overlap within a dipole-dipole coupling (Förster) mechanism. Substantial deviation from single-exponential decay of the excited donor (due to the dispersion of donor-acceptor distances) is expected and observed. The time profiles and resulting ΦEET are modeled on the basis of (Förster) energy transfer between chromophores relatively densely packed in a two-dimensional compartment. Initial studies of two ternary and one quaternary combination of chromophores show the enhanced spectral coverage and energy-transfer efficacy expected on the basis of the binary systems. Collectively, this approach may provide one of the simplest designs for self-assembled light-harvesting systems that afford broad solar collection and efficient energy transfer.
Collapse
Affiliation(s)
- Tuba Sahin
- †Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michelle A Harris
- ‡Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Pothiappan Vairaprakash
- †Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Dariusz M Niedzwiedzki
- §Photosynthetic Antenna Research Center, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Vijaya Subramanian
- ∥Center for Biomedical Engineering and Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Andrew P Shreve
- ∥Center for Biomedical Engineering and Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - David F Bocian
- ⊥Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- ‡Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Jonathan S Lindsey
- †Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
22
|
Lindsey JS. De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 2015; 115:6534-620. [PMID: 26068531 DOI: 10.1021/acs.chemrev.5b00065] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
23
|
Ra D, Gauger KA, Muthukumaran K, Balasubramanian T, Chandrashaker V, Taniguchi M, Yu Z, Talley DC, Ehudin M, Ptaszek M, Lindsey JS. Progress Towards Synthetic Chlorins with Graded Polarity, Conjugatable Substituents, and Wavelength Tunability. J PORPHYR PHTHALOCYA 2015; 19:547-572. [PMID: 26640361 DOI: 10.1142/s1088424615500042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in chlorin synthetic chemistry now enable the de novo preparation of diverse chlorin-containing molecular architectures. Five distinct molecular designs have been explored here, including hydrophobic bioconjugatable (oxo)chlorins; a hydrophilic bioconjugatable chlorin; a trans-ethynyl/iodochlorin building block; a set of chlorins bearing electron-rich (methoxy, dimethylamino, methylthio) groups at the 3-position; and a set of ten 3,13-disubstituted chlorins chiefly bearing groups with extended π-moieties. Altogether 23 new chlorins (17 targets, 6 intermediates) have been prepared. The challenge associated with molecular designs that encompass the combination of "hydrophilic, bioconjugatable and wavelength-tunable" chiefly resides in the nature of the hydrophilic unit.
Collapse
Affiliation(s)
- Doyoung Ra
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Kelly A Gauger
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Kannan Muthukumaran
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | | | | | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Daniel C Talley
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Melanie Ehudin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| |
Collapse
|
24
|
Yuen JM, Harris MA, Liu M, Diers JR, Kirmaier C, Bocian DF, Lindsey JS, Holten D. Effects of substituents on synthetic analogs of chlorophylls. Part 4: How formyl group location dictates the spectral properties of chlorophylls b, d and f. Photochem Photobiol 2015; 91:331-42. [PMID: 25488432 DOI: 10.1111/php.12401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022]
Abstract
Photosynthetic organisms are adapted to light characteristics in their habitat in part via the spectral characteristics of the associated chlorophyll pigments, which differ in the position of a formyl group around the chlorin macrocycle (chlorophylls b, d, f) or no formyl group (chlorophyll a). To probe the origin of this spectral tuning, the photophysical and electronic structural properties of a new set of synthetic chlorins are reported. The zinc and free base chlorins have a formyl group at either the 2- or 3-position. The four compounds have fluorescence yields in the range 0.19-0.28 and singlet excited-state lifetimes of ca 4 ns for zinc chelates and ca 8 ns for the free base forms. The photophysical properties of the 2- and 3-formyl zinc chlorins are similar to those observed previously for 13-formyl or 3,13-diformyl chlorins, but differ markedly from those for 7-formyl analogs. Molecular-orbital characteristics obtained from density functional theory (DFT) calculations were used as input to spectral simulations employing the four-orbital model. The analysis has uncovered the key changes in electronic structure engendered by the presence/location of a formyl group at various macrocycle positions, which is relevant to understanding the distinct spectral properties of the natural chlorophylls a, b, d and f.
Collapse
Affiliation(s)
- Jonathan M Yuen
- Department of Chemistry, Washington University, St. Louis, MO
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xiong R, Andres J, Scheffler K, Borbas KE. Synthesis and characterisation of lanthanide-hydroporphyrin dyads. Dalton Trans 2015; 44:2541-53. [DOI: 10.1039/c4dt02448f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroporphyrin-linked lanthanide complexes with variations in tetrapyrrole structure, linker length and mode of attachment are reported.
Collapse
Affiliation(s)
- Ruisheng Xiong
- Department of Chemistry – BMC
- Uppsala University
- 75123 Uppsala
- Sweden
| | - Julien Andres
- Department of Chemistry – BMC
- Uppsala University
- 75123 Uppsala
- Sweden
| | - Kira Scheffler
- Department of Chemistry – BMC
- Uppsala University
- 75123 Uppsala
- Sweden
| | - K. Eszter Borbas
- Department of Chemistry – BMC
- Uppsala University
- 75123 Uppsala
- Sweden
| |
Collapse
|
26
|
Chen CY, Taniguchi M, Lindsey JS. NMR spectral properties of 16 synthetic bacteriochlorins with site-specific 13C or 15N substitution. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 1 H , 13 C , and 15 N nuclear magnetic resonance (NMR) spectral properties have been examined of a family of synthetic bacteriochlorins wherein each member incorporates a pair of 13 C or 15 N atoms. The atom locations span the inner core of the macrocycle: (1) 15 N at the 21,23- or 22,24-positions; (2) 13 C at the meso- (5,15- or 10,20-) positions; (3) 13 C at the pyrrole α-positions (1,11- or 4,14-positions); and (4) 13 C at the pyrroline α-positions (6,16- or 9,19-positions). Each bacteriochlorin lacks peripheral substituents other than a geminal dimethyl group at the 8- and 18-positions to preclude adventitious dehydrogenation. In total, eight free base and eight zinc bacteriochlorin isotopologs were examined to directly assign 1 H , 13 C and 15 N resonances of the macrocycle skeleton. Complete and unambiguous assignments, including those for all tertiary and quaternary carbons, were accomplished chiefly by direct inspection of 1D NMR spectra of each isotopolog. Coupling constants (1 H –1 H , 13 C –1 H , 15 N –1 H , 13 C –13 C and 15 N –13 C ), which are rarely reported for tetrapyrroles, also were extracted. The 1 H and 13 C chemical shifts were then compared to those of unsaturated analogs (chlorin, porphyrin) and natural bacteriochlorophylls. The comprehensive set of NMR spectroscopic properties of sparsely substituted bacteriochlorins provides valuable information for understanding substitution effects and aromaticity in structurally more elaborate counterparts.
Collapse
Affiliation(s)
- Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| |
Collapse
|
27
|
Zhiyentayev TM, Boltaev UT, Solov'eva AB, Aksenova NA, Glagolev NN, Chernjak AV, Melik-Nubarov NS. Complexes of Chlorin e6 with Pluronics and Polyvinylpyrrolidone: Structure and Photodynamic Activity in Cell Culture. Photochem Photobiol 2013; 90:171-82. [PMID: 24118074 DOI: 10.1111/php.12181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/24/2013] [Indexed: 01/13/2023]
Abstract
Polymeric carriers are extensively used in photodynamic therapy (PDT) for increase of efficacy of photosensitizers. Here, we report the influence of nine Pluronic copolymers on phototoxicity of chlorin e6 (Ce6), in particular 5- to 7-fold rise in the phototoxicity caused by hydrophilic Pluronics F127, F108, F68 and F87 and practically no influence on Ce6 of more hydrophobic polymers. The revealed value of 0.2 mg mL(-1) of Pluronic F127 concentration sufficient for half-of-maximal increase of Ce6 photodynamic activity proved to be close to 0.16 mg mL(-1) inherent in well-documented carrier poly(N-vinylpyrrolidone) (PVP). The dissociation constants of Ce6 complexes with Pluronic F127 and PVP that were estimated from UV spectra were 0.252 and 0.036 mg mL(-1) , respectively, indicating higher stability of Ce6 complex with PVP. According to the results of (1) H-NMR studies of Ce6 complexes, the porphyrin interacts not only with hydrophobic regions but also with hydrophilic sides of both polymers.
Collapse
Affiliation(s)
- Timur M Zhiyentayev
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Umed T Boltaev
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander V Chernjak
- Institute of Problems of Chemical Physics RAS, prosp. Academika Semenova 1, Chernogolovka, Russia
| | | |
Collapse
|
28
|
Aravindu K, Kim HJ, Taniguchi M, Dilbeck PL, Diers JR, Bocian DF, Holten D, Lindsey JS. Synthesis and photophysical properties of chlorins bearing 0–4 distinct meso-substituents. Photochem Photobiol Sci 2013; 12:2089-109. [DOI: 10.1039/c3pp50240f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Akhigbe J, Haskoor J, Krause JA, Zeller M, Brückner C. Formation, structure, and reactivity of meso-tetraaryl-chlorolactones, -porpholactams, and -chlorolactams, porphyrin and chlorin analogues incorporating oxazolone or imidazolone moieties. Org Biomol Chem 2013; 11:3616-28. [PMID: 23535718 DOI: 10.1039/c3ob40138c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joshua Akhigbe
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | | | | | | | | |
Collapse
|
30
|
Laakso J, Rosser GA, Szíjjártó C, Beeby A, Borbas KE. Synthesis of chlorin-sensitized near infrared-emitting lanthanide complexes. Inorg Chem 2012; 51:10366-74. [PMID: 22978627 DOI: 10.1021/ic3015354] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lanthanide (Yb(3+), Nd(3+)) complexes equipped with red-absorbing hydroporphyrin (chlorin) antennae were synthesized and characterized. The syntheses are scalable, highly modular, and enable the introduction of different chlorins functionalized with a single reactive group (COOH or NH(2)). Absorption maxima were dependent on chlorin substitution pattern (monomeso aryl or dimeso aryl) and metalation state (free base or zinc chelate). The complexes benefit from dual chlorin (610-639 nm) and lanthanide (980 or 1065 nm for Yb- or Nd-complexes, respectively) emission in the biologically relevant red and near IR region of the spectrum.
Collapse
Affiliation(s)
- Johanna Laakso
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Chen CY, Sun E, Fan D, Taniguchi M, McDowell BE, Yang E, Diers JR, Bocian DF, Holten D, Lindsey JS. Synthesis and Physicochemical Properties of Metallobacteriochlorins. Inorg Chem 2012; 51:9443-64. [DOI: 10.1021/ic301262k] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Erjun Sun
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Dazhong Fan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Brian E. McDowell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Eunkyung Yang
- Department
of Chemistry, Washington University, St.
Louis, Missouri 63130-4889, United States
| | - James R. Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United
States
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United
States
| | - Dewey Holten
- Department
of Chemistry, Washington University, St.
Louis, Missouri 63130-4889, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| |
Collapse
|
32
|
Brückner C, Ogikubo J, McCarthy JR, Akhigbe J, Hyland MA, Daddario P, Worlinsky JL, Zeller M, Engle JT, Ziegler CJ, Ranaghan MJ, Sandberg MN, Birge RR. meso-arylporpholactones and their reduction products. J Org Chem 2012; 77:6480-94. [PMID: 22734444 DOI: 10.1021/jo300963m] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rational syntheses of meso-tetraaryl-3-oxo-2-oxaporphyrins 5, known as porpholactones, via MnO(4)(-)-mediated oxidations of the corresponding meso-tetraaryl-2,3-dihydroxychlorins (7) is detailed. Since chlorin 7 is prepared from the parent porphyrin 1, this amounts to a 2-step replacement of a pyrrole moiety in 1 by an oxazolone moiety. The stepwise reduction of the porpholactone 5 results in the formation of chlorin analogues, meso-tetraaryl-3-hydroxy-2-oxachlorin (11) and meso-tetraaryl-2-oxachlorins (12). The reactivity of 11 with respect to nucleophilic substitution by O-, N-, and S-nucleophiles is described. The profound photophysical consequences of the formal replacement of a pyrrole with an oxazolone (porphyrin-like chromophore) or (substituted) oxazole moiety (chlorin-like chromophore with, for the parent oxazolochlorin 12, red-shifted Q(x) band with enhanced oscillator strengths) are detailed and rationalized on the basis of SAC-CI and MNDO-PSDCI molecular orbital theory calculations. The single crystal X-ray structures of the porpholactones point at a minor steric interaction between the carbonyl oxygen and the flanking phenyl group. The essentially planar structures of all chromophores in all oxidation states prove that the observed optical properties originate from the intrinsic electronic properties of the chromophores and are not subject to conformational modulation.
Collapse
Affiliation(s)
- Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ogikubo J, Meehan E, Engle JT, Ziegler CJ, Brückner C. meso-Aryl-3-alkyl-2-oxachlorins. J Org Chem 2012; 77:6199-207. [PMID: 22731999 DOI: 10.1021/jo300964v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formal replacement of a pyrrole moiety of meso-tetraarylporphyrin 1 by an oxazole moiety is described. The key step is the conversion of porpholactones 4 (prepared by a known two-step oxidation procedure from 1) by addition of alkyl Grignard reagent to form meso-tetraaryl-3-alkyl-2-oxachlorins 9 (alkyloxazolochlorins; alkyl = Me, Et, iPr). Hemiacetal 9 can be converted to an acetal, reduced to an ether, or converted to bis-alkyloxazolochlorins 11. The optical properties (UV-visible and fluorescence spectroscopy) are described. The chlorin-like optical properties of the alkyloxazolochlorins are compared to regular chlorins, such as 2,3-dihydroxychlorins and nonalkylated oxazolochlorins made by reduction from porpholactone 4. The conformations of the mono- and bis-alkylated 2-oxachlorins, as determined by single crystal X-ray diffractometry, are essentially planar, thus proving that their optical properties are largely due to their intrinsic electronic properties and not affected by conformational effects. The mono- and bis-3-alkyl-2-oxachlorins are a class of readily prepared and oxidatively stable chlorins.
Collapse
Affiliation(s)
- Junichi Ogikubo
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | |
Collapse
|
34
|
Springer JW, Faries KM, Diers JR, Muthiah C, Mass O, Kee HL, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 3: The Distinctive Impact of Auxochromes at the 7- versus 3-Positions. Photochem Photobiol 2012; 88:651-74. [DOI: 10.1111/j.1751-1097.2012.01083.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Mass O, Taniguchi M, Ptaszek M, Springer JW, Faries KM, Diers JR, Bocian DF, Holten D, Lindsey JS. Structural characteristics that make chlorophylls green: interplay of hydrocarbon skeleton and substituents. NEW J CHEM 2011. [DOI: 10.1039/c0nj00652a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Pereira NAM, Serra AC, Pinho e Melo TMVD. Novel Approach to Chlorins and Bacteriochlorins: [8π+2π] Cycloaddition of Diazafulvenium Methides with Porphyrins. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Structural studies of sparsely substituted synthetic chlorins and phorbines establish benchmarks for changes in the ligand core and framework of chlorophyll macrocycles. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Ptaszek M, Lahaye D, Krayer M, Muthiah C, Lindsey JS. De Novo Synthesis of Long-Wavelength Absorbing Chlorin-13,15-dicarboximides. J Org Chem 2010; 75:1659-73. [DOI: 10.1021/jo902649d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marcin Ptaszek
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Dorothée Lahaye
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Michael Krayer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Chinnasamy Muthiah
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| |
Collapse
|
39
|
A. Jacobi P, L. Brielmann H, Chiu M, Ghosh I, I. Hauck S, Lanz S, Leung S, Li Y, Liu H, Löwer F, G. O’Neal W, Pippin D, Pollina E, A. Pratt B, Robert F, P. Roberts W, Tassa C, Wang H. 4-Alkynoic Acids in the Synthesis of Biologically Important Tetrapyrroles. HETEROCYCLES 2010. [DOI: 10.3987/rev-10-sr(e)6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Enakieva YY, Bessmertnykh AG, Gorbunova YG, Stern C, Rousselin Y, Tsivadze AY, Guilard R. Synthesis of meso-Polyphosphorylporphyrins and Example of Self-Assembling. Org Lett 2009; 11:3842-5. [DOI: 10.1021/ol901421e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yulia Y. Enakieva
- Russian Academy of Science, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky pr., 31, GSP-1, 119991, Moscow, Russia, and Université de Bourgogne - ICMUB UMR CNRS 5260, 9 avenue Alain Savary - BP 47870, 21078 Dijon, France
| | - Alla G. Bessmertnykh
- Russian Academy of Science, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky pr., 31, GSP-1, 119991, Moscow, Russia, and Université de Bourgogne - ICMUB UMR CNRS 5260, 9 avenue Alain Savary - BP 47870, 21078 Dijon, France
| | - Yulia G. Gorbunova
- Russian Academy of Science, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky pr., 31, GSP-1, 119991, Moscow, Russia, and Université de Bourgogne - ICMUB UMR CNRS 5260, 9 avenue Alain Savary - BP 47870, 21078 Dijon, France
| | - Christine Stern
- Russian Academy of Science, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky pr., 31, GSP-1, 119991, Moscow, Russia, and Université de Bourgogne - ICMUB UMR CNRS 5260, 9 avenue Alain Savary - BP 47870, 21078 Dijon, France
| | - Yoann Rousselin
- Russian Academy of Science, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky pr., 31, GSP-1, 119991, Moscow, Russia, and Université de Bourgogne - ICMUB UMR CNRS 5260, 9 avenue Alain Savary - BP 47870, 21078 Dijon, France
| | - Aslan Y. Tsivadze
- Russian Academy of Science, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky pr., 31, GSP-1, 119991, Moscow, Russia, and Université de Bourgogne - ICMUB UMR CNRS 5260, 9 avenue Alain Savary - BP 47870, 21078 Dijon, France
| | - Roger Guilard
- Russian Academy of Science, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky pr., 31, GSP-1, 119991, Moscow, Russia, and Université de Bourgogne - ICMUB UMR CNRS 5260, 9 avenue Alain Savary - BP 47870, 21078 Dijon, France
| |
Collapse
|
41
|
Mass O, Ptaszek M, Taniguchi M, Diers JR, Kee HL, Bocian DF, Holten D, Lindsey JS. Synthesis and Photochemical Properties of 12-Substituted versus 13-Substituted Chlorins. J Org Chem 2009; 74:5276-89. [DOI: 10.1021/jo900706x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga Mass
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Marcin Ptaszek
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - James R. Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Hooi Ling Kee
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| |
Collapse
|
42
|
Akhigbe J, Ryppa C, Zeller M, Brückner C. Oxazolochlorins. 2. Intramolecular Cannizzaro Reaction of meso-Tetraphenylsecochlorin Bisaldehyde. J Org Chem 2009; 74:4927-33. [PMID: 19489565 DOI: 10.1021/jo9006046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joshua Akhigbe
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663
| | - Claudia Ryppa
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663
| | - Matthias Zeller
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663
| |
Collapse
|
43
|
Ryppa C, Niedzwiedzki D, Morozowich NL, Srikanth R, Zeller M, Frank HA, Brückner C. Stepwise conversion of two pyrrole moieties of octaethylporphyrin to pyridin-3-ones: synthesis, mass spectral, and photophysical properties of mono and bis(oxypyri)porphyrins. Chemistry 2009; 15:5749-62. [PMID: 19388039 PMCID: PMC3748135 DOI: 10.1002/chem.200900280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Free-base octaethylporphyrin (OEP) was converted in two steps (beta,beta'-dihydroxylation and oxidative diol cleavage with concomitant aldol condensation) to the corresponding oxypyriporphyrin. This conversion was previously described to be applicable only to the Ni(II) complex of OEP. Modified diol cleavage conditions made this reaction sequence now applicable to free-base OEP. The single-crystal structure of the resulting free-base oxypyriporphyrin was determined, proving its near-perfect planarity. The reaction sequence can also be applied to oxypyriporphyrin itself, generating the unprecedented bacteriochlorin-type bis(oxypyri)porphyrin as two separable isomers. The ground-state (UV/Vis and fluorescence spectroscopies) and excited-state (transient triplet-triplet absorption, triplet lifetimes, and triplet EPR spectroscopy) photophysical properties of all chromophores are compared with those of OEP, chlorins, and oxochlorins. The pyridone-modified porphyrins possess unique spectroscopic signatures that distinguish them from regular porphyrins or chlorins. The presence of the pyridone moiety alters the ESI(+) collision-induced fragmentation properties of these oxypyriporphyrins only to a minor degree when compared with those of OEP or chlorins, confirming their stability.
Collapse
Affiliation(s)
- Claudia Ryppa
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT 06269-3060 (U.S.A.), Fax: (+1) 860 486 2743
| | - Dariusz Niedzwiedzki
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT 06269-3060 (U.S.A.), Fax: (+1) 860 486 2743
| | - Nicole L. Morozowich
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT 06269-3060 (U.S.A.), Fax: (+1) 860 486 2743
| | - Rapole Srikanth
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT 06269-3060 (U.S.A.), Fax: (+1) 860 486 2743
| | - Matthias Zeller
- Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555-3663 (U.S.A.)
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT 06269-3060 (U.S.A.), Fax: (+1) 860 486 2743
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT 06269-3060 (U.S.A.), Fax: (+1) 860 486 2743
| |
Collapse
|
44
|
Muthiah C, Lahaye D, Taniguchi M, Ptaszek M, Lindsey JS. Regioselective Bromination Tactics in the de Novo Synthesis of Chlorophyll b Analogues. J Org Chem 2009; 74:3237-47. [DOI: 10.1021/jo9002954] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chinnasamy Muthiah
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Dorothée Lahaye
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Marcin Ptaszek
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| |
Collapse
|
45
|
Kee HL, Diers JR, Ptaszek M, Muthiah C, Fan D, Lindsey JS, Bocian DF, Holten D. Chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes: controlling charge-transfer and fluorescence properties in polar media. Photochem Photobiol 2009; 85:909-20. [PMID: 19222800 DOI: 10.1111/j.1751-1097.2008.00532.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photophysical properties of two energy-transfer dyads that are potential candidates for near-infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads (FbC-FbB and ZnC-FbB) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2-dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of approximately (5-10 ps)(-1) and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (Phif=0.19) and singlet excited-state lifetimes (tau approximately 5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited-state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC-FbB than for ZnC-FbB in a given solvent. For example, the Phif and tau values for FbC-FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC-FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge-transfer states, as assessed by ground-state redox potentials and supported by molecular-orbital energies derived from density functional theory calculations. Controlling the extent of excited-state quenching in polar media will allow the favorable photophysical properties of the chlorin-bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC-FbB, 110 nm for ZnC-FbB) between the red-region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (lambdaf=760 nm), long bacteriochlorin excited-state lifetime (approximately 5.5 ns), and narrow (<or=20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity- and lifetime-imaging techniques.
Collapse
Affiliation(s)
- Hooi Ling Kee
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kee HL, Nothdurft R, Muthiah C, Diers JR, Fan D, Ptaszek M, Bocian DF, Lindsey JS, Culver JP, Holten D. Examination of Chlorin-Bacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared Molecular Imaging Probes†. Photochem Photobiol 2008; 84:1061-72. [DOI: 10.1111/j.1751-1097.2008.00409.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Dogutan DK, Lindsey JS. Investigation of the Scope of a New Route to ABCD-Bilanes and ABCD-Porphyrins. J Org Chem 2008; 73:6728-42. [DOI: 10.1021/jo8010396] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dilek Kiper Dogutan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| |
Collapse
|
48
|
Kee HL, Kirmaier C, Tang Q, Diers JR, Muthiah C, Taniguchi M, Laha JK, Ptaszek M, Lindsey JS, Bocian DF, Holten D. Effects of substituents on synthetic analogs of chlorophylls. Part 2: Redox properties, optical spectra and electronic structure. Photochem Photobiol 2008; 83:1125-43. [PMID: 17880507 DOI: 10.1111/j.1751-1097.2007.00151.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The optical absorption spectra and redox properties are presented for 24 synthetic zinc chlorins and 18 free base analogs bearing a variety of 3,13 (beta) and 5,10,15 (meso) substituents. Results are also given for a zinc and free base oxophorbine, which contain the keto-bearing isocyclic ring present in the natural photosynthetic pigments such as chlorophyll a. Density functional theory calculations were carried out to probe the effects of the types and positions of substituents on the characteristics (energies, electron distributions) of the frontier molecular orbitals. A general finding is that the 3,13 positions are more sensitive to the effects of auxochromes than the 5,10,15 positions. The auxochromes investigated (acetyl>ethynyl>vinyl>aryl) cause a significant redshift and intensification of the Qy band upon placement at the 3,13 positions, whereas groups at the 5,10,15 positions result in much smaller redshifts that are accompanied by a decrease in relative Qy intensity. In addition, the substituent-induced shifts in first oxidation and reduction potentials faithfully track the energies of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), respectively. The calculations show that the LUMO is shifted more by substituents than the HOMO, which derives from the differences in the electron densities of the two orbitals at the substituent sites. The trends in the substituent-induced effects on the wavelengths and relative intensities of the major features (By, Bx, Qx, Qy) in the near-UV to near-IR absorption bands are well accounted for using Gouterman's four-orbital model, which incorporates the effects of the substituents on the HOMO-1 and LUMO+1 in addition to the HOMO and LUMO. Collectively, the results and analysis presented herein and in the companion paper provide insights into the effects of substituents on the optical absorption, redox and other photophysical properties of the chlorins. These insights form a framework that underpins the rational design of chlorins for applications encompassing photomedicine and solar-energy conversion.
Collapse
Affiliation(s)
- Hooi Ling Kee
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Borbas KE, Kee HL, Holten D, Lindsey JS. A compact water-soluble porphyrin bearing an iodoacetamido bioconjugatable site. Org Biomol Chem 2008; 6:187-94. [DOI: 10.1039/b715072e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Abstract
Recently, we described a new synthesis of C,D-ring symmetric chlorins 11, involving 2 + 2 condensation of bis-formyl-dihydrodipyrrins 9 with symmetrically substituted dipyrromethane diacids 10 (Method I). However, while versatile in many aspects, Method I was unsuited to the broader goal of synthesizing fully non-symmetric chlorins of general structure 15, which requires regioselective control over the reacting centers in the A,B- and C,D-ring components. In this paper, we describe four new 2 + 2 strategies that accomplish this differentiation (Methods II-V). Of these, Method V, which combines operational simplicity with moderate to high product yields, proved to be the most effective route, exploiting reactivity differences between the two formyl groups of A,B-rings 9 to impart excellent regioselectivity. Methods II-IV are also useful alternatives to Method V, although in some cases, the appropriately functionalized precursors are less readily available. All four approaches generate single regioisomers of diversely substituted chlorins, and in every case, the 2 + 2 condensation is accomplished in a simple, one-flask procedure without need for additives such as oxidizing agents or metals. Taken together, these methodologies provide expanded access to an array of chlorins for SAR studies that may advance the effectiveness of PDT and other applications.
Collapse
Affiliation(s)
- William G O'Neal
- Burke Chemical Laboratory, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|