1
|
Cruz-López O, Ner M, Nerín-Fonz F, Jiménez-Martínez Y, Araripe D, Marchal JA, Boulaiz H, Gutiérrez-de-Terán H, Campos JM, Conejo-García A. Design, synthesis, HER2 inhibition and anticancer evaluation of new substituted 1,5-dihydro-4,1-benzoxazepines. J Enzyme Inhib Med Chem 2021; 36:1553-1563. [PMID: 34251942 PMCID: PMC8279156 DOI: 10.1080/14756366.2021.1948841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A series of 11 new substituted 1,5-dihydro-4,1-benzoxazepine derivatives was synthesised to study the influence of the methyl group in the 1-(benzenesulphonyl) moiety, the replacement of the purine by the benzotriazole bioisosteric analogue, and the introduction of a bulky substituent at position 6 of the purine, on the biological effects. Their inhibition against isolated HER2 was studied and the structure–activity relationships have been confirmed by molecular modelling studies. The most potent compound against isolated HER2 is 9a with an IC50 of 7.31 µM. We have investigated the effects of the target compounds on cell proliferation. The most active compound (7c) against all the tumour cell lines studied (IC50 0.42–0.86 µM) does not produce any modification in the expression of pro-caspase 3, but increases the caspase 1 expression, and promotes pyroptosis.
Collapse
Affiliation(s)
- Olga Cruz-López
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| | - Matilde Ner
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Francho Nerín-Fonz
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweeden
| | - Yaiza Jiménez-Martínez
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain.,Biopathology and Medicine Regenerative Institute, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | - David Araripe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweeden
| | - Juan A Marchal
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain.,Biopathology and Medicine Regenerative Institute, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | - Houria Boulaiz
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain.,Biopathology and Medicine Regenerative Institute, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | | | - Joaquín M Campos
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| |
Collapse
|
2
|
1-(Benzenesulfonyl)-1,5-dihydro-4,1-benzoxazepine as a new scaffold for the design of antitumor compounds. Future Med Chem 2017; 9:1129-1140. [DOI: 10.4155/fmc-2017-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aim: Bozepinib is a potent and selective anticancer compound which chemical structure is made up of a benzofused seven-membered ring and a purine moiety. We previously demonstrated that the purine fragment does not exert antiproliferative effect per se. Methodology: A series of 1-(benzenesulfonyl)-4,1-benzoxazepine derivatives were synthesized in order to study the influence of the benzofused seven-membered ring in the biological activity of bozepinib by means of antiproliferative, cell cycle and apoptosis studies. Results & conclusion: Our results show that the methyleneoxy enamine sulfonyl function is essential in the antitumor activity of the structures and thus, it is a scaffold suitable for further modification with a view to obtain more potent antitumor compounds.
Collapse
|
3
|
Ghorai MK, Sahoo AK, Bhattacharyya A. Syntheses of Imidazo-, Oxa-, and Thiazepine Ring Systems via Ring-Opening of Aziridines/Cu-Catalyzed C–N/C–C Bond Formation. J Org Chem 2014; 79:6468-79. [DOI: 10.1021/jo500888j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Manas K. Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Ashis Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Aditya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
4
|
Caba O, Díaz-Gavilán M, Rodríguez-Serrano F, Boulaiz H, Aránega A, Gallo MA, Marchal JA, Campos JM. Anticancer activity and cDNA microarray studies of a (RS)-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-6-chloro-9H-purine, and an acyclic (RS)-O,N-acetalic 6-chloro-7H-purine. Eur J Med Chem 2011; 46:3802-9. [PMID: 21684047 DOI: 10.1016/j.ejmech.2011.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 02/04/2023]
|
5
|
López-Cara LC, Conejo-García A, Marchal JA, Macchione G, Cruz-López O, Boulaiz H, García MA, Rodríguez-Serrano F, Ramírez A, Cativiela C, Jiménez AI, García-Ruiz JM, Choquesillo-Lazarte D, Aránega A, Campos JM. New (RS)-benzoxazepin-purines with antitumour activity: The chiral switch from (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine. Eur J Med Chem 2010; 46:249-58. [PMID: 21126804 DOI: 10.1016/j.ejmech.2010.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/27/2010] [Accepted: 11/08/2010] [Indexed: 11/30/2022]
Abstract
Completing an SAR study, a series of (RS)-6-substituted-7- or 9-(1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-7H or 9H-purines has been prepared under microwave-assisted conditions. Their antiproliferative activities on MCF-7 and MDA-MB-231 cancerous cell lines are presented, being the majority of the IC(50) values below 1μM. The most active compound (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine (14) presents an IC(50) of 0.166μM against the human cancerous cell line MDA-MB-231. Compound 14 was the most selective against the human breast adenocarcinoma MCF-7 and MDA-MB-231 cancer cell lines (Therapeutic Indexes, TIs=5.1 and 11.0, respectively) in relation to the normal one MCF-10A. (RS)-14 was resolved into its enantiomers. Both enantiomers are equally potent, but more potent than the corresponding racemic mixture. (R)-14 induces apoptosis against MCF-7 up to 52.50% of cell population after 48h, being more potent than the clinical-used drug paclitaxel (43%). (RS)-14 induces no acute toxicity in mice after two weeks of treatment.
Collapse
Affiliation(s)
- Luisa C López-Cara
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Díaz-Gavilán M, Gómez-Vidal JA, Rodríguez-Serrano F, Marchal JA, Caba O, Aránega A, Gallo MA, Espinosa A, Campos JM. Anticancer activity of (1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-pyrimidines and -purines against the MCF-7 cell line: Preliminary cDNA microarray studies. Bioorg Med Chem Lett 2008; 18:1457-60. [PMID: 18194866 DOI: 10.1016/j.bmcl.2007.12.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 12/22/2007] [Accepted: 12/27/2007] [Indexed: 01/04/2023]
Abstract
Completing a SAR study, a series of (RS)-1- or 3-(1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-pyrimidines and (RS)-6-substituted-7- or 9-(1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-7H- or 9H-purines have been prepared. Their antiproliferative activities on MCF-7 cells are here presented and discussed. (RS)-6-Chloro-9-[1-(9H-9-fluorenylmethoxycarbonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-9H-purine (28) is the most active (IC(50)=0.67+/-0.18 microM) of the series so far described. cDNA microarray technology reveals potential drug targets, which are mainly centred on apoptosis regulatory pathway genes.
Collapse
Affiliation(s)
- Mónica Díaz-Gavilán
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|