Höfle G, Reinecke S, Laude U, Spitzner D. Amethystin, the coloring principle of Stentor amethystinus.
JOURNAL OF NATURAL PRODUCTS 2014;
77:1383-1389. [PMID:
24882688 DOI:
10.1021/np5001363]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Among the ciliates, Stentor amethystinus stands out for its conspicuous red-violet color compared to its blue- and red-colored relatives Stentor coeruleus and Blepharisma japonicum. Rich blooms in German lakes allowed us to collect sufficient organisms to isolate the pigments and elucidate the structure of the main component amethystin (4) by spectroscopic methods as a carboxy derivative of blepharismin. Depending on conditions, the carboxy group appears as an orthoester or as a mixture of the orthoester and small amounts of a hydroxylactone. Derivatives of both isomeric forms were obtained by acetylation and methylation supporting the proposed structures. On reaction of amethystin with base in the presence of oxygen, oxyamethystin and, under vigorous conditions, p-hydroxybenzoic acid were formed. In addition to 4, two homologues, an isomer of amethystin, and stentorin F (1b) were identified in the primary extract. Further, a biosynthetic scheme is proposed linking stentorin, blepharismin, and amethystin type compounds to the hypothetical protostentorin as a common intermediate.
Collapse