1
|
Kaigorodova EY, Mamardashvili G, Kurochkin IY, Mamardashvili N. Influence of supramolecular self-assembly of oppositely charged Co- and Sn-porphyrins on the their spectral-luminescent properties in aqueous and aqueous micellar media of ionic surfactants. OPTICAL MATERIALS 2024; 154:115805. [DOI: 10.1016/j.optmat.2024.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
|
2
|
Mamardashvili G, Kaigorodova E, Mamardashvili N, Koifman O. Medium viscosity effect on the fluorescent properties of arrays consisting of two BODIPY chromophores axially bound to a Sn(IV)porphyrin via a phenolate bridge. J PORPHYR PHTHALOCYA 2023; 27:373-382. [DOI: 10.1142/s1088424623500025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
The arrays consisting of two BODIPY chromophores axially bound to a Sn(IV)Porphyrin via a phenolate bridge have been synthesized and characterized. Photophysical properties of obtained systems have been investigated in aqua medium with different viscosity due to the addition of glycerin. The fluorescence quantum yield of the triad upon excitation at different wavelengths, as well as its lifetime and singlet oxygen generation quantum yield in an excited state, has been determined. It has been shown that if in the triad composition the fluorescent properties of the BODIPY fragment are weakened in all studied media, then the fluorescent properties of the porphyrin fragment depend on the properties of the medium. Quenching of the BODIPY fluorescence and the porphyrin fluorescence enhancement in viscous media or increasing of the triad’s ability to generate singlet oxygen in water is the result of photo-induced electron transfer from the phenolate to the porphyrin fragment. The efficiency of electron transfer and, consequently, the efficiency of quenching depend on the conformational mobility of the ligandin the triad, i.e. on the relative position of the phenolic and indacene fragments, which gives the designed triad the properties of a fluorescent molecular rotor. The best efficiency of the triad as a fluorescence molecular rotor has been obtained in the low viscosity range from 1 to 4 cP.
Collapse
Affiliation(s)
- G.M. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st.1, 153045 Ivanovo, Russian Federation
| | - E.Yu. Kaigorodova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st.1, 153045 Ivanovo, Russian Federation
| | - N.Z. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st.1, 153045 Ivanovo, Russian Federation
| | - O.I. Koifman
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st.1, 153045 Ivanovo, Russian Federation
| |
Collapse
|
3
|
Likhonina A, Lebedev I, Mamardashvili G, Mamardashvili N. pH indicator and rotary fluorescent properties of the Sn(IV)-octaetylporphyrin-(BODIPY)2 triad. Inorganica Chim Acta 2022; 542:121150. [DOI: 10.1016/j.ica.2022.121150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Mamardashvili G, Kaigorodova E, Lebedev I, Mamardashvili N. Axial complexes of Sn(IV)-tetra(4-sulfophenyl)porphyrin with azorubine in aqueous media: Fluorescent probes of local viscosity and pH indicators. J Mol Liq 2022; 366:120277. [DOI: 10.1016/j.molliq.2022.120277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Shee N, Kim HJ. Three Isomeric Zn(II)-Sn(IV)-Zn(II) Porphyrin-Triad-Based Supramolecular Nanoarchitectures for the Morphology-Dependent Photocatalytic Degradation of Methyl Orange. ACS OMEGA 2022; 7:9775-9784. [PMID: 35350320 PMCID: PMC8945165 DOI: 10.1021/acsomega.2c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Three isomeric Zn(II)-Sn(IV)-Zn(II) porphyrin-based triads (T2, T3, and T4) were synthesized by the reaction of common Zn(II) porphyrins (ZnL) with different Sn(IV) porphyrins (SnP n ). The Sn(IV) porphyrin precursors differ with respect to the position of the pyridyl-N atoms. All compounds were characterized by 1H NMR, UV-vis, fluorescence spectroscopy, electrospray ionization-mass spectrometry, and field-emission scanning electron microscopy measurements. In these structures, the intramolecular cooperative metal-ligand coordination of the 3-pyridyl nitrogen in SnP 3 with axial ZnL and the π-π interactions between the adjacent porphyrin triad are the determining factors affecting the nanostructures of T3. Owing to the geometrical constraints of the SnP 2 center, this type of interaction is not possible for T2. Therefore, only the π-π interactions affect the self-assembly process. In the case of SnP 4 , intermolecular coordinative interactions and then π-π interactions are responsible for the nanostructure of T4. The morphology-dependent photocatalytic degradation of methyl orange (MO) dye in aqueous solution under visible light irradiation was observed for these photocatalysts, and the degradation ratio of MO varied from 76 to 94% within 100 min. Nanorod-shaped T3 exhibited higher performance compared to nanosphere T2 and nanoflake T4.
Collapse
Affiliation(s)
- Nirmal
Kumar Shee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Joon Kim
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
6
|
Likhonina AE, Mamardashvili GM, Mamardashvili NZ. Photoactive porphyrin-fluorescein arrays to control the acidity of medium. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Goswami A, Saha S, Elramadi E, Ghosh A, Schmittel M. Off-Equilibrium Speed Control of a Multistage Molecular Rotor: 2-Fold Chemical Fueling by Acid or Silver(I). J Am Chem Soc 2021; 143:14926-14935. [PMID: 34478277 DOI: 10.1021/jacs.1c08005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Driving conformational motion in defined off-equilibrium oscillations can be achieved using chemical fuels. When the ultrafast turnstile 1 (k298> 1012 Hz) was fueled with 2-cyano-2-phenylpropanoic acid (Fuel 1), the diprotonated rotor [H2(1)]2+ (k298 = 84.0 kHz) formed as a transient regaining the dynamics of the initial turnstile after consumption of the fuel (135 min). Upon addition of silver(I) (Fuel 2) to turnstile 1, the metastable rotor [Ag2(1)]2+ (k298 = 1.57 Hz) was initially furnished, but due to a consequentially triggered SN2 reaction, the Ag+ ions were consumed as insoluble AgBr along with regeneration of 1 (within 3 h). The off-equilibrium fast ⇆ slow rotor conversions fueled by acid and silver(I) were directly monitored by fluorescence and 1H NMR. In addition, metal ion exchange was fueled enabling off-equilibrium oscillations between rotors [Li2(1)]2+ ⇆ [Ag2(1)]2+. In the end, both sustainability and efficiency of the process were increased in unison by using the interfering proton waste in the formation of a [2]pseudorotaxane.
Collapse
Affiliation(s)
- Abir Goswami
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
8
|
Mamardashvili GM, Lazovskiy DA, Khodov IA, Efimov AE, Mamardashvili NZ. New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu 2+ Cation. Polymers (Basel) 2021; 13:829. [PMID: 33800405 PMCID: PMC7962819 DOI: 10.3390/polym13050829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
New coordination oligomers and polymers of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin have been constructed by the chelation reaction of its diaxialphenolates with Cu2+. The structure and properties of the synthesized polyporphyrin arrays were investigated by 1H Nuclear Magnetic Resonance (1H NMR), Infra Red (IR), Ultra Violet - Visible (UV-Vis) and fluorescence spectroscopy, mass spectrometry, Powder X-Rays Diffraction (PXRD), Electron Paramagnetic Resonance (EPR), thermal gravimetric, elemental analysis, and quantum chemical calculations. The results show that the diaxial coordination of bidentate organic ligands (L-tyrazine and diaminohydroquinone) leads to the quenching of the tetrapyrrole chromophore fluorescence, while the chelation of the porphyrinate diaxial complexes with Cu2+ is accompanied by an increase in the fluorescence in the organo-inorganic hybrid polymers formed. The obtained results are of particular interest to those involved in creating new 'chemo-responsive' (i.e., selectively interacting with other chemical species as receptors, sensors, or photocatalysts) materials, the optoelectronic properties of which can be controlled by varying the number and connection type of monomeric fragments in the polyporphyrin arrays.
Collapse
Affiliation(s)
| | | | | | | | - Nugzar Z. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, Akademicheskaya st. 1, 153045 Ivanovo, Russia; (G.M.M.); (D.A.L.); (I.A.K.); (A.E.E.)
| |
Collapse
|
9
|
Mamardashvili GM, Lazovskiy DA, Khodov IA, Efimov AE, Mamardashvili NZ. New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers (Basel) 2021. [DOI: https://doi.org/10.3390/polym13050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New coordination oligomers and polymers of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin have been constructed by the chelation reaction of its diaxialphenolates with Cu2+. The structure and properties of the synthesized polyporphyrin arrays were investigated by 1H Nuclear Magnetic Resonance (1H NMR), Infra Red (IR), Ultra Violet - Visible (UV-Vis) and fluorescence spectroscopy, mass spectrometry, Powder X-Rays Diffraction (PXRD), Electron Paramagnetic Resonance (EPR), thermal gravimetric, elemental analysis, and quantum chemical calculations. The results show that the diaxial coordination of bidentate organic ligands (L-tyrazine and diaminohydroquinone) leads to the quenching of the tetrapyrrole chromophore fluorescence, while the chelation of the porphyrinate diaxial complexes with Cu2+ is accompanied by an increase in the fluorescence in the organo-inorganic hybrid polymers formed. The obtained results are of particular interest to those involved in creating new ‘chemo-responsive’ (i.e., selectively interacting with other chemical species as receptors, sensors, or photocatalysts) materials, the optoelectronic properties of which can be controlled by varying the number and connection type of monomeric fragments in the polyporphyrin arrays.
Collapse
|
10
|
Lazovskiy DA, Mamardashvili GM, Khodov IA, Mamardashvili NZ. Water soluble porphyrin-fluorescein triads: Design, DFT calculation and pH-change-triggered fluorescence response. J Photochem Photobiol A Chem 2020. [DOI: https://doi.org/10.1016/j.jphotochem.2020.112832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Lazovskiy DA, Mamardashvili GM, Khodov IA, Mamardashvili NZ. Water soluble porphyrin-fluorescein triads: Design, DFT calculation and pH-change-triggered fluorescence response. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
dos Santos CG, de Lima GM. Tin and organotin coordination polymers and covalently bonded supramolecular materials – The last 15 years of research. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
14
|
Mamardashvili GM, Maltceva OV, Lazovskiy DA, Khodov IA, Borovkov V, Mamardashvili NZ, Koifman OI. Medium viscosity effect on fluorescent properties of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin complexes in buffer solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Mamardashvili GM, Maltceva OV, Lazovskiy DA, Khodov IA, Borovkov V, Mamardashvili NZ, Koifman OI. Medium viscosity effect on fluorescent properties of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin complexes in buffer solutions. J Mol Liq 2019. [DOI: https://doi.org/10.1016/j.molliq.2018.12.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Mamardashvili GM, Lazovskiy DA, Maltceva OV, Zh. Mamardashvili N, Koifman OI. The Sn(IV)-tetra(4-sulfonatophenyl) porphyrin complexes with antioxidants: Synthesis, structure, properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Babu B, Amuhaya E, Oluwole D, Prinsloo E, Mack J, Nyokong T. Preparation of NIR absorbing axial substituted tin(iv) porphyrins and their photocytotoxic properties. MEDCHEMCOMM 2019; 10:41-48. [PMID: 30774853 PMCID: PMC6349065 DOI: 10.1039/c8md00373d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Sn(iv) porphyrins ([Sn(iv)TTP(3PyO)2] (5) and [Sn(iv)TPP(3PyO)2] (6) [tetrathienylporphyrin (TTP), tetraphenylporphyrin (TPP), and pyridyloxy (PyO)]) were prepared and characterized and their photocytotoxicity upon irradiation with 625 nm light has been studied. The presence of the 3PyO axial ligands was found to limit the aggregation and enhance the solubility of 5 and 6 in DMF/H2O (1 : 1). The photophysical properties and photodynamic therapy (PDT) activity of the meso-2-thienyl and meso-phenyl-substituted Sn(iv) porphyrins are compared. 5 and 6 were found to be photocytotoxic in MCF-7 cancer cells when irradiated with a Thorlabs M625L3 LED at 625 nm but remained nontoxic in the dark. The PDT activity of Sn(iv) meso-tetra-2-thienylporphyrin 5 was found to be significantly enhanced relative to its analogous tetraphenylporphyrin 6. There is a marked red-shift of the Q00 band of 5 into the therapeutic window due to the meso-2-thienyl rings, and 5 has an unusually high singlet oxygen quantum yield value of 0.83 in DMF. The results demonstrate that readily synthesized axially ligated Sn(iv) meso-arylporphyrins are potentially suitable for use as singlet oxygen photosensitizers in biomedical applications and merit further in depth investigation in this context.
Collapse
Affiliation(s)
- Balaji Babu
- Centre for Nanotechnology Innovation , Department of Chemistry , Rhodes University , Makhanda 6140 , South Africa .
| | - Edith Amuhaya
- School of Pharmacy and Healthy Sciences , United States International University - Africa , Nairobi , Kenya
| | - David Oluwole
- Centre for Nanotechnology Innovation , Department of Chemistry , Rhodes University , Makhanda 6140 , South Africa .
| | - Earl Prinsloo
- Biotechnology Innovation Centre , Rhodes University , Makhanda 6140 , South Africa
| | - John Mack
- Centre for Nanotechnology Innovation , Department of Chemistry , Rhodes University , Makhanda 6140 , South Africa .
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation , Department of Chemistry , Rhodes University , Makhanda 6140 , South Africa .
| |
Collapse
|
18
|
Ghosh A, Paul I, Saha S, Paululat T, Schmittel M. Machine Metathesis: Thermal and Catalyzed Exchange of Piston Rods in Multicomponent Nanorotor/Nanoslider Ensemble. Org Lett 2018; 20:7973-7976. [PMID: 30525699 DOI: 10.1021/acs.orglett.8b03541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three-component nanorotor R1 ( k298 = 80 kHz) and two-component slider-on-deck DS2 ( k298 = 440 kHz) were prepared from rotator S1 and stator [Cu3(1)]3+ and from S2 and deck D, respectively. Mixing of R1 with DS2 leads to clean metathesis, furnishing the slower nanodevices R2 ( k298 = 29.6 kHz) and DS1 ( k298 = 32.2 kHz). Exchange of the piston rods S1 and S2 is completed within 22 min (uncatalyzed) or 3 min (catalyzed) at 298 K.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Thomas Paululat
- University of Siegen, Organische Chemie II , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| |
Collapse
|
19
|
Paul I, Goswami A, Mittal N, Schmittel M. Catalytic Three-Component Machinery: Control of Catalytic Activity by Machine Speed. Angew Chem Int Ed Engl 2017; 57:354-358. [DOI: 10.1002/anie.201709644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/30/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Nikita Mittal
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| |
Collapse
|
20
|
Paul I, Goswami A, Mittal N, Schmittel M. Katalytische Drei-Komponenten-Maschinen: Steuerung der katalytischen Aktivität mittels Maschinengeschwindigkeit. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Nikita Mittal
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| |
Collapse
|
21
|
Mautner FA, Berger C, Domian E, Fischer RC, Massoud SS. Synthesis and characterization of polymeric azido Zn(II) and Ni(II) complexes based on 3-hydroxypyridine. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Samanta SK, Rana A, Schmittel M. Konformativer Schlupf bestimmt die Rotationsfrequenz in Fünf-Komponenten-Nanorotoren. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soumen K. Samanta
- Forschungszentrum für Mikro-/Nanochemie und -technologie Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Anup Rana
- Forschungszentrum für Mikro-/Nanochemie und -technologie Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Michael Schmittel
- Forschungszentrum für Mikro-/Nanochemie und -technologie Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| |
Collapse
|
23
|
Samanta SK, Rana A, Schmittel M. Conformational Slippage Determines Rotational Frequency in Five-Component Nanorotors. Angew Chem Int Ed Engl 2016; 55:2267-72. [DOI: 10.1002/anie.201509108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Soumen K. Samanta
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Strasse 2 57068 Siegen Germany
| | - Anup Rana
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Strasse 2 57068 Siegen Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Strasse 2 57068 Siegen Germany
| |
Collapse
|
24
|
Liu S, Kondratuk DV, Rousseaux SAL, Gil-Ramírez G, O'Sullivan MC, Cremers J, Claridge TDW, Anderson HL. Caterpillar track complexes in template-directed synthesis and correlated molecular motion. Angew Chem Int Ed Engl 2015; 54:5355-9. [PMID: 25683453 PMCID: PMC4471551 DOI: 10.1002/anie.201412293] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Indexed: 01/05/2023]
Abstract
Small alterations to the structure of a star-shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring. Caterpillar track complexes can also be prepared by binding the hexapyridyl template inside the 8- and 10-porphyrin nanorings. NMR exchange spectroscopy (EXSY) experiments show that these complexes exhibit correlated motion, in which the conrotatory rotation of the two template wheels is coupled to rotation of the nanoring track. In the case of the 10-porphyrin system, the correlated motion can be locked by binding palladium(II) dichloride between the two templates.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| | - Dmitry V Kondratuk
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| | - Guzmán Gil-Ramírez
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| | - Melanie C O'Sullivan
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| | - Jonathan Cremers
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxford, OX1 3TA (UK)
| |
Collapse
|
25
|
Liu S, Kondratuk DV, Rousseaux SAL, Gil‐Ramírez G, O'Sullivan MC, Cremers J, Claridge TDW, Anderson HL. Caterpillar Track Complexes in Template-Directed Synthesis and Correlated Molecular Motion. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 127:5445-5449. [PMID: 27546919 PMCID: PMC4974918 DOI: 10.1002/ange.201412293] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Indexed: 01/03/2023]
Abstract
Small alterations to the structure of a star-shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring. Caterpillar track complexes can also be prepared by binding the hexapyridyl template inside the 8- and 10-porphyrin nanorings. NMR exchange spectroscopy (EXSY) experiments show that these complexes exhibit correlated motion, in which the conrotatory rotation of the two template wheels is coupled to rotation of the nanoring track. In the case of the 10-porphyrin system, the correlated motion can be locked by binding palladium(II) dichloride between the two templates.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| | - Dmitry V. Kondratuk
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| | - Sophie A. L. Rousseaux
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| | - Guzmán Gil‐Ramírez
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| | - Melanie C. O'Sullivan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| | - Jonathan Cremers
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| | - Tim D. W. Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| | - Harry L. Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA (UK)
| |
Collapse
|
26
|
Rananaware A, Bhosale RS, Ohkubo K, Patil H, Jones LA, Jackson SL, Fukuzumi S, Bhosale SV, Bhosale SV. Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study. J Org Chem 2015; 80:3832-40. [PMID: 25822257 DOI: 10.1021/jo502760e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Supramolecular self-assembly and self-organization are simple and convenient ways to design and create controlled assemblies with organic molecules, and they have provoked great interest due to their potential applications in various fields, such as electronics, photonics, and light-energy conversion. Herein, we describe the synthesis of two π-conjugated porphyrin molecules bearing tetraphenylethene moieties with high fluorescence quantum yield. Photophysical and electrochemical studies were conducted to understand the physical and redox properties of these new materials, respectively. Furthermore, these derivatives were used to investigate self-assembly via the solvophobic effect. The self-assembled aggregation was performed in nonpolar and polar organic solvents and forms nanospheres and ring-like nanostructures, respectively. The solution based aggregation was studied by means of UV-vis absorption, emission, XRD, and DLS analyses. Self-assembled ring-shape structures were visualized by SEM and TEM imaging. This ring-shape morphology of nanosized macromolecules might be a good candidate for the creation of artificial light-harvesting nanodevices.
Collapse
Affiliation(s)
- Anushri Rananaware
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| | - Rajesh S Bhosale
- ‡Polymers and Functional Material Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana India.,∥RMIT-IICT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
| | - Kei Ohkubo
- §Department of Material and Life Science Graduate School of Engineering, Osaka University, GSE Common East 12F, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hemlata Patil
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| | - Lathe A Jones
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia.,⊥Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Sam L Jackson
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| | - Shunichi Fukuzumi
- §Department of Material and Life Science Graduate School of Engineering, Osaka University, GSE Common East 12F, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sidhanath V Bhosale
- ‡Polymers and Functional Material Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana India
| | - Sheshanath V Bhosale
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| |
Collapse
|
27
|
Poddutoori PK, Lim GN, Vassiliev S, D'Souza F. Ultrafast charge separation and charge stabilization in axially linked ‘tetrathiafulvalene–aluminum(iii) porphyrin–gold(iii) porphyrin’ reaction center mimics. Phys Chem Chem Phys 2015; 17:26346-58. [DOI: 10.1039/c5cp04818d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential electron transfer leading to charge stabilization in newly synthesized vertically aligned ‘tetrathiafulvalene–aluminum(iii) porphyrin–gold(iii) porphyrin’ supramolecular triads is reported.
Collapse
Affiliation(s)
| | - Gary N. Lim
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | - Serguei Vassiliev
- Department of Biological Sciences
- Brock University
- St. Catharines
- Canada
| | | |
Collapse
|
28
|
Schmittel M. From self-sorted coordination libraries to networking nanoswitches for catalysis. Chem Commun (Camb) 2015; 51:14956-68. [DOI: 10.1039/c5cc06605k] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This feature article sketches our long way from the development of dynamic heteroleptic coordination motifs to the self-sorting of multi-component libraries and finally the design of a new family of triangular nanomechanical switches, which are useful for ON–OFF control of catalysis and in bidirectional communication.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
29
|
Wang F, Xu L, Nawaz MH, Liu F, Zhang W. Morphology controlled supramolecular assemblies via complexation between (5,10,15,20-tetrakisphenyl-porphine) zinc and 4,4′-bipyridine: from nanospheres to microrings. RSC Adv 2014. [DOI: 10.1039/c4ra10087e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Samanta SK, Bats JW, Schmittel M. A five-component nanorotor with speed regulation. Chem Commun (Camb) 2014; 50:2364-6. [DOI: 10.1039/c3cc49476d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Affiliation(s)
- Soumen K. Samanta
- Center of Micro- and Nanochemistry
and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str.
2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry
and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str.
2, D-57068 Siegen, Germany
| |
Collapse
|
32
|
Leu BM, Zgierski MZ, Bischoff C, Li M, Hu MY, Zhao J, Martin SW, Alp EE, Scheidt WR. Quantitative vibrational dynamics of the metal site in a tin porphyrin: an IR, NRVS, and DFT study. Inorg Chem 2013; 52:9948-53. [PMID: 23962374 PMCID: PMC3787516 DOI: 10.1021/ic401152b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used a newer, synchrotron-based, spectroscopic technique (nuclear resonance vibrational spectroscopy, NRVS) in combination with a more traditional one (infrared absorption, IR) to obtain a complete, quantitative picture of the metal center vibrational dynamics in a six-coordinated tin porphyrin. From the NRVS (119)Sn site-selectivity and the sensitivity of the IR signal to (112)Sn/(119)Sn isotope substitution, we identified the frequency of the antisymmetric stretching of the axial bonds (290 cm(-1)) and all the other vibrations involving Sn. Experimentally authenticated density functional theory (DFT) calculations aid the data interpretation by providing detailed normal mode descriptions for each observed vibration. These results may represent a starting point toward the characterization of the local vibrational dynamics of the metallic site in tin porphyrins and compounds with related structures. The quantitative complementariness between IR, NRVS, and DFT is emphasized.
Collapse
Affiliation(s)
- Bogdan M Leu
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Han M, Zhang HY, Yang LX, Ding ZJ, Zhuang RJ, Liu Y. A [2]Catenane and Pretzelane Based on Sn-Porphyrin and Crown Ether. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Birin KP, Gorbunova YG, Tsivadze AY. NMR investigation of intramolecular dynamics of heteroleptic triple-decker (porphyrinato)(phthalocyaninato) lanthanides. Dalton Trans 2011; 40:11474-9. [DOI: 10.1039/c1dt11231g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Latter MJ, Langford SJ. Porphyrinic molecular devices: towards nanoscaled processes. Int J Mol Sci 2010; 11:1878-87. [PMID: 20480048 PMCID: PMC2871144 DOI: 10.3390/ijms11041878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/30/2010] [Accepted: 04/14/2010] [Indexed: 12/02/2022] Open
Abstract
The structural, coordinative, photochemical and electrochemical properties of the porphyrin macrocycle that make them the functional element of choice in ubiquitous biological systems, e.g., chlorophyll, cytochrome P450 and hemoglobin, also contribute to making porphyrins and metalloporphyrins desirable in a "bottom-up" approach to the construction of nanosized devices. This paper highlights some recent advances in the construction of supramolecular assemblies based on the porphyrin macrocycle that display optically readable functions as a result of photonic or chemical stimuli.
Collapse
Affiliation(s)
- Melissa J. Latter
- Centre for Strategic Nano-fabrication, The University of Western Australia, Crawley, West Australia 6009, Australia; E-Mail:
| | - Steven J. Langford
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
36
|
McMurtrie JC, Arnold DP. Tin(IV) porphyrin complexes. Crystal structures of meso-tetraphenyl-porphyrinatotin(IV) diacetate, bis(dichloro-acetate), bis(trifluoroacetate) and diformate, and structural correlations for tin(IV) porphyrin complexes with O-bound anionic ligands. J STRUCT CHEM+ 2010. [DOI: 10.1007/s10947-010-0015-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Zhang D, Zhang Q, Su J, Tian H. A dual-ion-switched molecular brake based on ferrocene. Chem Commun (Camb) 2009:1700-2. [DOI: 10.1039/b823073k] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|