1
|
Fang J, Ren H, Xu S, Huang C, Jiang Y, Zhang W, You S, Qin B. Asymmetric Synthesis of β-Hydroxyphosphonates via a Chemoenzymatic Cascade. Org Lett 2024; 26:5458-5462. [PMID: 38899921 DOI: 10.1021/acs.orglett.4c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chiral β-hydroxyphosphonates are essential building blocks for organophosphorus compounds. However, the asymmetric synthesis of these units remains a significant challenge. Herein, we describe a one-pot chemoenzymatic cascade process to access chiral β-hydroxyphosphonates, which combines photo-oxidative chemical reactions and bioreductions. The incorporation of photooxidation in the chemical reaction resulted in up to 92% yield and >99% enantiomeric excess (ee) of β-hydroxyphosphonates in the cascade. In addition, the scale-up of diethyl (S)-(2-hydroxy-2-phenylethyl)phosphonate demonstrates the potential application of this strategy.
Collapse
Affiliation(s)
- Jiali Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Hanwen Ren
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Shaowu Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Chenming Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Yingqian Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| |
Collapse
|
2
|
Shoberu A, Li SS, Zhang GY, Li DP, Zou JP. Phosphinoyl radical-initiated vicinal hydroxy-phosphorylation of alkenes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Yao H, Liu J, Wang C. Boronic acid-catalysed C-3 selective ring opening of 3,4-epoxy alcohols with thiophenols and thiols. Org Biomol Chem 2019; 17:1901-1905. [PMID: 30259944 DOI: 10.1039/c8ob02141d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this protocol we described a boronic acid-catalysed C-3 selective ring opening of 3,4-epoxy alcohols with thiophenols and thiols as nucleophiles. This diastereo- and enantiospecific reaction provides an efficient entry to prepare a variety of hydroxyl sulfides. Through the directing effect of the hydroxyl group, nucleophilic attack on the C-3 position of the epoxide moiety is favoured. It can be rationalized in a proposed transition state, in which the boronic acid catalyst tethers both epoxides and S-nucleophiles.
Collapse
Affiliation(s)
- Hongqing Yao
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, P. R. China.
| | | | | |
Collapse
|
4
|
A new procedure for synthesis of $$\upalpha $$ α -aminophosphonates by aqueous formic acid as an effective and environment-friendly organocatalyst. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wang C, Luo L, Yamamoto H. Metal-Catalyzed Directed Regio- and Enantioselective Ring-Opening of Epoxides. Acc Chem Res 2016; 49:193-204. [PMID: 26789498 DOI: 10.1021/acs.accounts.5b00428] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Control of regio- and stereoselectivity of chemical reactions is the central theme in synthetic chemistry. Regioselective and enantiospecific ring opening of readily available enantioenriched epoxides precursors provides a straightforward access to diverse highly functionalized molecules which can serve as chiral building blocks for synthesis of biologically active compounds. However, prior to our research work, the scope of catalytic highly regioselective ring opening of epoxides is limited to structurally or electronically biased epoxides, such as terminal and aromatic epoxides. Regioselective ring-opening of epoxides with substituents on both sides demonstrating similar steric and electronic effects is still a formidable challenge for organic chemists. To address this challenge, our approach is to use the readily available functional moiety incorporated in an epoxide as a directing group to realize the regioselective nucleophilic attack on the oxirane ring. Alternatively, asymmetric ring-opening of epoxides can also provide the ring-opening products in highly enantioenriched form. However, excellent results are usually obtained in the case of the kinetic resolution of terminal epoxides or the desymmetrization of meso-epoxides. In these cases, the issue of regiocontrol of the ring-opening is circumvented or minimized. Based on our successful results of regioselective ring-opening of functionalized epoxides by implementing the directed ring-opening strategy, we also investigated the enantioselective ring-opening of internal epoxides bearing a functional moiety as directing group. This Account summarizes our research on metal-catalyzed directed ring-opening reactions of epoxides, which encompasses the following breakthroughs: (1) highly regioselective ring-opening of various substrates including epoxy allylic alcohols, epoxy homoallylic alcohols and epoxy allylic sulfonamides with a variety of N-, O-, and halide-nucleophiles catalyzed by W-, Mo-, or Ni-salt; (2) first kinetic resolutions of epoxy allylic alcohols, epoxy homoallylic alcohols, and epoxy allylic sulfonamides with various amines as nucleophiles, which were catalyzed by W-bishydroxamic acid (W-BHA), nickel-BINAM, and Gd-N,N'-dioxide catalytic system, respectively; (3) successful implementation of the strategy of combined asymmetric syntheses by the combination of the enantioselective epoxidation and the enantioselective ring-opening of 2,3-epoxy alcohols establishing a new entry to prepare amino alcohols in regio-, diastereo-, and enantiomerically pure form.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Chemistry, The University of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| | - Lan Luo
- Department of Chemistry, The University of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| | - Hisashi Yamamoto
- Department of Chemistry, The University of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Gao Y, Wu J, Xu J, Zhang P, Tang G, Zhao Y. Mn(OAc)3-mediated synthesis of β-hydroxyphosphonates from P(O)–H compounds and alkenes. RSC Adv 2014. [DOI: 10.1039/c4ra10593a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Sobkowski M, Kraszewski A, Stawinski J. Recent Advances in H-Phosphonate Chemistry. Part 2. Synthesis of C-Phosphonate Derivatives. PHOSPHORUS CHEMISTRY II 2014; 361:179-216. [DOI: 10.1007/128_2014_563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Hospital A, Meurillon M, Peyrottes S, Périgaud C. An Alternative Pathway to Ribonucleoside β-Hydroxyphosphonate Analogues and Related Prodrugs. Org Lett 2013; 15:4778-81. [DOI: 10.1021/ol402143y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Audrey Hospital
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS-UM1-UM2, Nucleosides and Phosphorylated Effectors Team, University Montpellier 2, cc 1705, place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Maïa Meurillon
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS-UM1-UM2, Nucleosides and Phosphorylated Effectors Team, University Montpellier 2, cc 1705, place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS-UM1-UM2, Nucleosides and Phosphorylated Effectors Team, University Montpellier 2, cc 1705, place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS-UM1-UM2, Nucleosides and Phosphorylated Effectors Team, University Montpellier 2, cc 1705, place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
9
|
Silica-Bonded 2-Hydroxyethylammonium Acetate as an Efficient and Recyclable Catalyst for the Synthesis of 2-Amino-4H-chromen-4-yl Phosphonates and β-Phosphonomalonates. Catal Letters 2013. [DOI: 10.1007/s10562-013-0968-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Sobhani S, Jahanshahi R. Nano n-propylsulfonated γ-Fe2O3 (NPS-γ-Fe2O3) as a magnetically recyclable heterogeneous catalyst for the efficient synthesis of 2-indolyl-1-nitroalkanes and bis(indolyl)methanes. NEW J CHEM 2013. [DOI: 10.1039/c3nj40899j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Singh GS, Mollet K, D’hooghe M, De Kimpe N. Epihalohydrins in Organic Synthesis. Chem Rev 2012; 113:1441-98. [DOI: 10.1021/cr3003455] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Girija S. Singh
- Chemistry Department, Faculty
of Science, University of Botswana, Private
Bag 0022, Gaborone, Botswana
| | - Karen Mollet
- Department of Sustainable Organic
Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent,
Belgium
| | - Matthias D’hooghe
- Department of Sustainable Organic
Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent,
Belgium
| | - Norbert De Kimpe
- Department of Sustainable Organic
Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent,
Belgium
| |
Collapse
|
12
|
5-Hydroxypentylammonium acetate as a reusable ionic liquid catalyzes tandem Knoevenagel-phospha-Michael reaction of aldehydes, malononitrile and phosphites. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0088-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Taniguchi T, Idota A, Yokoyama S, Ishibashi H. Synthesis of β-hydroxyphosphonates by iron-catalyzed oxidative addition of phosphonyl radicals to alkenes. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Synthesis and antiproliferative activity of novel α- and β-dialkoxyphosphoryl isothiocyanates. Bioorg Med Chem Lett 2011; 21:4572-6. [PMID: 21704523 DOI: 10.1016/j.bmcl.2011.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/26/2011] [Accepted: 05/28/2011] [Indexed: 12/21/2022]
Abstract
A series of 15 mostly new dialkoxyphosphoryl alkyl and aralkyl isothiocyanates were synthesized using two alternative strategies, and their in vitro antiproliferative activity against several cancer cell lines (including drug resistant) is here demonstrated. The IC(50) values measured for the new compounds are within the range of 6.3-21.5 μM, and they are quite similar to the activity of two best and most extensively investigated natural benzyl isothiocyanate (A) and phenethyl isothiocyanate (B). Preliminary studies utilizing the cell cycle and reduced glutathione level analysis performed on A549 lung cancer cell line using representative compounds revealed important differences in the mechanism of action possibly correlated with their chemical properties. Hydrophobic compounds react mainly with the cytosolic glutathione reduced leading to its depletion, causing an oxidative stress and cell cycle arrest in G0/G1 phase. On the other hand, hydrophilic compounds cause moderate cell cycle arrest and massive cell death associated with moderate reduced glutathione depletion. These suggest that significant changes in the chemical structure of isothiocyanates, which do not lead to the significant changes in antiproliferative activity, but simultaneously cause a differences in the mechanism of action are possible.
Collapse
|
15
|
Sobhani S, Parizi ZP. An eco-friendly procedure for one-pot synthesis of β-phosphonomalonates: micellar solution of sodium stearate catalyzes tandem Knoevenagel–phospha-Michael reaction of aldehydes, malonitrile, and phosphites in aqueous media. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Sobhani S, Parizi ZP, Rezazadeh S. Phospha-Michael addition of phosphorus nucleophiles to α,β-unsaturated malonates using 3-aminopropylated silica gel as an efficient and recyclable catalyst. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2010.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|