1
|
Yang H, Zhang Y, Chen W, Shi H, Huo L, Li J, Li H, Xie X, She X. Scalable Total Syntheses of (±)-Catellatolactams A and B. Org Lett 2023; 25:1003-1007. [PMID: 36748956 DOI: 10.1021/acs.orglett.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first total syntheses of (±)-catellatolactams A and B, two novel ansamacrolactams, are described in 5 and 8 steps, respectively. The strategy relies on an amidation reaction to couple the acylated Meldrum's acid and an aryl amine, a regioselective C-H insertion to construct the γ-lactam moiety, and an RCM reaction to forge the macrocycles with E-olefin. This concise and scalable synthesis provided over 200 mg of the target molecules.
Collapse
Affiliation(s)
- Hesi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Yan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Hongliang Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Liang Huo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Jia Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| |
Collapse
|
2
|
Richter MJR, Zécri FJ, Briner K, Schreiber SL. Modular Synthesis of Cyclopropane-Fused N-Heterocycles Enabled by Underexplored Diazo Reagents. Angew Chem Int Ed Engl 2022; 61:e202203221. [PMID: 35395129 PMCID: PMC9474654 DOI: 10.1002/anie.202203221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 01/13/2023]
Abstract
Cyclopropane-fused N-heterocycles are featured in various biologically active compounds and represent attractive scaffolds in medicinal chemistry. However, synthesis routes to access structurally and functionally diverse cyclopropane-fused N-heterocycles remain underexplored. Leveraging novel α-diazo acylating agents, we report a general approach for the direct and modular synthesis of cyclopropane-fused lactams from unsaturated amines. The operationally simple transformation, which proceeds through successive acylation, (3+2) cycloaddition and fragmentation, tolerates a broad range of functional groups and yields a wide spectrum of complex molecular scaffolds, including fused, bridged and spiro ring systems. We demonstrate the utility of this transformation in the concise syntheses of therapeutic agents milnaciprane and amitifadine.
Collapse
Affiliation(s)
- Matthieu J R Richter
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Frédéric J Zécri
- Novartis Institutes for BioMedical Research, Cambridge, MA 02142, USA
| | - Karin Briner
- Novartis Institutes for BioMedical Research, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Wu X, Li W. The Applications of
β
‐Keto
Amides for Heterocycle Synthesis. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoqiang Wu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai P. R. China
| | - Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai P. R. China
| |
Collapse
|
4
|
Richter MJR, Zécri FJ, Briner K, Schreiber SL. Modular Synthesis of Cyclopropane‐Fused N‐Heterocycles Enabled by Underexplored Diazo Reagents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthieu J. R. Richter
- Broad Institute Chemical Biology and Therapeutics Science Program 415 Main Street 02142 Cambridge UNITED STATES
| | - Frédéric J. Zécri
- Novartis Institutes for BioMedical Research Inc Global Discovery Chemistry 250 Massachusetts Ave 02139 Cambridge UNITED STATES
| | - Karin Briner
- Novartis Institutes for BioMedical Research Inc Global Discovery Chemistry 250 Massachusetts Ave 02139 Cambridge UNITED STATES
| | - Stuart L. Schreiber
- Harvard University Department of Chemistry and Chemical Biology 12 Oxford St. 2138 Cambridge UNITED STATES
| |
Collapse
|
5
|
Podlech J, Herzog S, Marten I, Weiß A. Synthesis of Diaza[5]helicenes by ortho,ortho′-Fusion of ortho-Terphenyls. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1804-8980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractDouble ortho-fusion in suitably substituted ortho-terphenyls was used for the synthesis of diaza[5]helicenes. Bis(carboxamido)-substituted ortho-terphenyls can be condensed to 5,9- and 6,9-diaza[5]helicenes, where substituents at the 6,10- and 5,10-positions, respectively, are introduced with the carboxamido groups. While a twofold coupling sequence with intermediate protection of one amino group has to be used for 5,9-diaza[5]helicenes, a more concise sequence avoiding the protection leads to 6,9-diaza[5]helicenes. The simple heating of ortho,ortho′-diazidoterphenyls furnishes 5,8-dihydroindolo[2,3-c]carbazoles, i.e., [5]helicenes with alternating benzene and pyrrole rings.
Collapse
|
6
|
Hochberger-Roa F, García-Ríos PH, López-Cortés JG, Ortega-Alfaro MC, Daran JC, Gouygou M, Urrutigoïty M. Interrupted Intramolecular Hydroaminomethylation of N-Protected-2-vinyl Anilines: Novel Access to 3-Substitued Indoles or Indoline-2-ols. Molecules 2022; 27:molecules27031074. [PMID: 35164340 PMCID: PMC8840357 DOI: 10.3390/molecules27031074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
A new synthetic alternative to the synthesis of 3-methyl indoles and 3-methyl indoline-2-ols with an excellent atomic economy is presented in this study. It is demonstrated that the intramolecular interrupted hydroaminomethylation (HAM) reaction is a powerful tool for the formation of these compounds, which exhibit wide-ranging biological activity. Several N-Protected-2-vinyl anilines were synthesized and involved in the reaction producing the corresponding 3-methylindole or 3-methyl indoline-2-ol depending on the nature of the N-protecting groups.
Collapse
Affiliation(s)
- Frank Hochberger-Roa
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Perla H. García-Ríos
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - José G. López-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - M. Carmen Ortega-Alfaro
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - Jean-Claude Daran
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Maryse Gouygou
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
- Correspondence:
| |
Collapse
|
7
|
Oxindole synthesis via C H activation methods. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Affiliation(s)
- Aaron Weiß
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT) Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Joachim Podlech
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT) Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
9
|
Wang XW, Chen MW, Wu B, Wang B, Zhou YG. Chiral Phosphoric Acid-Catalyzed Synthesis of Fluorinated 5,6-Dihydroindolo[1,2- c]quinazolines with Quaternary Stereocenters. J Org Chem 2019; 84:8300-8308. [PMID: 31132277 DOI: 10.1021/acs.joc.9b00985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A chiral phosphoric acid-catalyzed enantioselective synthesis of fluorinated 5,6-dihydroindolo[1,2- c]quinazolines has been developed by a condensation/amine addition cascade from 2-(1 H-indolyl)anilines and fluorinated ketones, giving the fluorinated aminals with quaternary stereogenic centers with excellent yields and up to 97% ee. A series of the fluorinated aromatic, aliphatic ketones, and ethyl trifluoropyruvate are suitable.
Collapse
Affiliation(s)
- Xin-Wei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
10
|
Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorine-containing indoles: Synthesis and biological activity. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Krishnan KK, Thankachan AP, Anilkumar G. Recent advances and perspectives in the synthesis of heterocycles via carbenes. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nat Chem 2014; 6:872-6. [PMID: 25242481 DOI: 10.1038/nchem.2034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/16/2014] [Indexed: 11/08/2022]
Abstract
The structures and biological activities of natural products have often provided inspiration in drug discovery. The functional benefits of natural products to the host organism steers the evolution of their biosynthetic pathways. Here, we describe a discovery approach--which we term activity-directed synthesis--in which reactions with alternative outcomes are steered towards functional products. Arrays of catalysed reactions of α-diazo amides, whose outcome was critically dependent on the specific conditions used, were performed. The products were assayed at increasingly low concentration, with the results informing the design of a subsequent reaction array. Finally, promising reactions were scaled up and, after purification, submicromolar ligands based on two scaffolds with no previous annotated activity against the androgen receptor were discovered. The approach enables the discovery, in tandem, of both bioactive small molecules and associated synthetic routes, analogous to the evolution of biosynthetic pathways to yield natural products.
Collapse
|
13
|
Wang Z, Bi X, Liao P, Liu X, Dong D. Cu(ii)-catalyzed cyclization of α-diazo-β-oxoamides with amines leading to pyrrol-3(2H)-ones. Chem Commun (Camb) 2013; 49:1309-11. [DOI: 10.1039/c2cc38473f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Schnaars C, Hansen T. Halodiazophosphonates, a New Class of Diazo Compounds for the Diastereoselective Intermolecular Rh(II) Catalyzed Cyclopropanation. Org Lett 2012; 14:2794-7. [DOI: 10.1021/ol3010276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Schnaars
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, N-0315 Oslo, Norway
| | - Tore Hansen
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, N-0315 Oslo, Norway
| |
Collapse
|
15
|
Kim J, Ohk Y, Park SH, Jung Y, Chang S. Intramolecular aromatic carbenoid insertion of biaryldiazoacetates for the regioselective synthesis of fluorenes. Chem Asian J 2011; 6:2040-7. [PMID: 21567971 DOI: 10.1002/asia.201100142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Indexed: 11/09/2022]
Abstract
The rhodium- or copper-catalyzed intramolecular aromatic carbenoid insertion of biaryldiazoacetates offers a convenient route to fluorene carboxylates with high yields. Whereas, thermal conditions provided a mixture of two regioisomeric products when substituted biaryldiazoacetates were employed as substrates. The developed catalytic conditions displayed an excellent level of regioselectivity, presumably owing to steric effects. The insertion mechanism was assumed to be an electrophilic aromatic substitution, which was supported by preliminary mechanistic studies. A chloro-substituted fluorene derivative was efficiently synthesized and utilized as a base-sensitive protecting group of amines.
Collapse
Affiliation(s)
- Jinho Kim
- Molecular-Level Interface Research Center and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Nadeau E, Ventura DL, Brekan JA, Davies HML. Controlling factors for C-H functionalization versus cyclopropanation of dihydronaphthalenes. J Org Chem 2010; 75:1927-39. [PMID: 20170115 DOI: 10.1021/jo902644f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodium(II)-catalyzed reactions of vinyldiazoacetates with dihydronaphthalenes were systematically studied. These substrates underwent cyclopropanantion and/or the combined C-H activation/Cope rearrangement in good overall yield and with good diastereo- and enantiocontrol. The selectivity of these reactions was profoundly influenced by the nature of the chiral catalyst, the vinyldiazoacetate, and the dihydronaphthalene. The best combinations for achieving the highest selectivity in the cyclopropanation and the combined C-H activation/Cope rearrangement of 1,2-dihydronaphthalenes are methyl 2-diazopent-3-enoate (2a)/Rh(2)(S-DOSP)(4) and methyl 3-(tert-butyldimethylsilyloxy)-2-diazopent-3-enoate (2b)/Rh(2)(S-PTAD)(4). These combinations are very effective at enantiodivergent reactions of 1-methyl-1,2-dihydronaphthalenes.
Collapse
Affiliation(s)
- Etienne Nadeau
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|