1
|
Liu H, Laporte AG, Tardieu D, Hazelard D, Compain P. Formal Glycosylation of Quinones with exo-Glycals Enabled by Iron-Mediated Oxidative Radical-Polar Crossover. J Org Chem 2022; 87:13178-13194. [PMID: 36095170 DOI: 10.1021/acs.joc.2c01635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intermolecular C-O coupling reaction of 1,4-quinones with exo-glycals under iron hydride hydrogen atom transfer (HAT) conditions is described. This method provides a direct and regioselective access to a wide range of phenolic O-ketosides related to biologically relevant natural products in diastereomeric ratios up to >98:2 in the furanose and pyranose series. No trace of the corresponding C-glycosylated products that might have resulted from the radical alkylation of 1,4-quinones was observed. The results of mechanistic experiments suggest that the key C-O bond-forming event proceeds through an oxidative radical-polar crossover process involving a single-electron transfer between the HAT-generated glycosyl radical and the electron-acceptor quinone.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
2
|
Xu Y, Wei ZY, Li W, Zhang J, Lu T, Jin Y, Zheng WJ, Feng G. Structures and hydrogen bonding of 1,7-dioxaspiro[5.5]undecane and its hydrates. Phys Chem Chem Phys 2021; 23:19289-19296. [PMID: 34525146 DOI: 10.1039/d1cp02964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformations of 1,7DSU and its stepwise solvation by up to 5 water molecules were explored using supersonic-jet Fourier transform microwave spectroscopy with the supplement of theoretical calculations. Experimentally, the rotational spectra of the most stable structures of the monomer, monohydrate and dihydrate were observed and assigned. The characteristics of the stability and intermolecular interaction topologies of the 1,7DSU monomer and its hydrated clusters were obtained by CREST conformational sampling followed by B3LYP-D3(BJ)/def2-TZVP geometrical optimizations and MP2/aug-cc-pVTZ single-point energy calculations. The first water molecule links to the 1,7DSU monomer through an OwH⋯O hydrogen bond. The water molecules tend to aggregate with each other and form cyclic structures for the n = 2-5 clusters. The interactions between water and the 1,7DSU monomer as well as those between water and water were revealed. The analyses of non-covalent interactions and the natural bond orbital suggest that the OwH⋯O1,7DSU, OwH⋯Ow, and CH⋯Ow hydrogen bonds play a prominent role in structural stability.
Collapse
Affiliation(s)
- Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Tao Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| |
Collapse
|
3
|
La Ferla B, D’Orazio G. Pyranoid Spirosugars as Enzyme Inhibitors. Curr Org Synth 2021; 18:3-22. [DOI: 10.2174/1570179417666200924152648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Background:
Pyranoid spirofused sugar derivatives represent a class of compounds with a significant
impact in the literature. From the structural point of view, the rigidity inferred by the spirofused entity has made
these compounds object of interest mainly as enzymatic inhibitors, in particular, carbohydrate processing enzymes.
Among them glycogen phosphorylase and sodium glucose co-transporter 2 are important target enzymes
for diverse pathological states. Most of the developed compounds present the spirofused entity at the C1 position
of the sugar moiety; nevertheless, spirofused entities can also be found at other sugar ring positions. The main
spirofused entities encountered are spiroacetals/thioacetals, spiro-hydantoin and derivatives, spiro-isoxazolines,
spiro-aminals, spiro-lactams, spiro-oxathiazole and spiro-oxazinanone, but also others are present.
Objectives:
The present review focuses on the most explored synthetic strategies for the preparation of this class
of compounds, classified according to the position and structure of the spirofused moiety on the pyranoid scaffold.
Moreover, the structures are correlated to their main biological activities or to their role as chiral auxiliaries.
Conclusion:
It is clear from the review that, among the different derivatives, the spirofused structures at position
C1 of the pyranoid scaffold are the most represented and possess the most relevant enzymatic inhibitor activities.
Nevertheless, great efforts have been devoted to the introduction of the spirofused entity also in the other positions,
mainly for the preparation of biologically active compounds but also for the synthesis of chiral auxiliaries
useful in asymmetric reactions; examples of such auxiliaries are the spirofused chiral 1,3-oxazolidin-2-ones and
1,3-oxazolidine-2-thiones.
Collapse
Affiliation(s)
- Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe D’Orazio
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Xiang K, Tong P, Yan B, Long L, Zhao C, Zhang Y, Li Y. Synthesis of Benzannulated [6,6]-Spiroketals by a One-Pot Carbonylative Sonogashira Coupling/Double Annulation Reaction. Org Lett 2018; 21:412-416. [DOI: 10.1021/acs.orglett.8b03586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuirong Xiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pei Tong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baorun Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lingling Long
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunbo Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Miranda S, Gómez AM, López JC. Diversity-Oriented Synthetic Endeavors of Newly Designed Ferrier and Ferrier-Nicholas Systems Derived from 1-C-Alkynyl-2-deoxy-2-C-Methylene Pyranosides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvia Miranda
- Bioorganic Chemistry Department; Instituto Quimica Organica General (IQOG-CSIC); Juan de la Cierva 3 28006 Madrid Spain
| | - Ana M. Gómez
- Bioorganic Chemistry Department; Instituto Quimica Organica General (IQOG-CSIC); Juan de la Cierva 3 28006 Madrid Spain
| | - J. Cristóbal López
- Bioorganic Chemistry Department; Instituto Quimica Organica General (IQOG-CSIC); Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
6
|
Rani MA, Kumar SV, Roja SS, Almansour AI, Kumar RS, Athimoolam S, Kumar RR. Synthesis of highly functionalized 2-thiaspiro[4.5]deca-6,8-dienes via atom efficient tandem Michael addition/Thorpe–Ziegler cyclization. RSC Adv 2016. [DOI: 10.1039/c6ra05572a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The reaction of 2,4-bis((Z)-arylidene)dihydrothiophen-3(2H)-ones and 2-(1-arylethylidene)malononitriles proceeded through a tandem sequence of reactions in a single step affording 2-thiaspiro[4.5]deca-6,8-dienes in quantitative yields.
Collapse
Affiliation(s)
- Mani Anusha Rani
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Sundaravel Vivek Kumar
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Somi Santharam Roja
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | | | - Raju Suresh Kumar
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - S. Athimoolam
- Department of Physics
- University College of Engineering
- Anna University Constituent College
- Nagercoil 629 004
- India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| |
Collapse
|
7
|
József J, Juhász L, Illyés TZ, Csávás M, Borbás A, Somsák L. Photoinitiated hydrothiolation of pyranoid exo-glycals: the d-galacto and d-xylo cases. Carbohydr Res 2015; 413:63-9. [PMID: 26101155 DOI: 10.1016/j.carres.2015.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/22/2015] [Indexed: 11/27/2022]
Abstract
Radical-mediated addition reactions of thiols to O-peracetylated exo-galactal and exo-xylal with 2,2-dimethoxy-2-phenylacetophenone as the photoinitiator resulted in high yielding formation of the corresponding β-d-glycopyranosylmethyl-sulfide derivatives (2,6-anhydro-1-deoxy-1-S-substituted-1-thio-alditols) with exclusive regio- and very high stereoselectivity, including disaccharide mimicks with Gly-CH2-S-Gly scaffolds.
Collapse
Affiliation(s)
- János József
- Department of Organic Chemistry, PO Box 20, University of Debrecen, H-4010 Debrecen, Hungary
| | - László Juhász
- Department of Organic Chemistry, PO Box 20, University of Debrecen, H-4010 Debrecen, Hungary
| | - Tünde Zita Illyés
- Department of Organic Chemistry, PO Box 20, University of Debrecen, H-4010 Debrecen, Hungary
| | - Magdolna Csávás
- Department of Pharmaceutical Chemistry, PO Box 78, University of Debrecen, H-4010 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, PO Box 78, University of Debrecen, H-4010 Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, PO Box 20, University of Debrecen, H-4010 Debrecen, Hungary.
| |
Collapse
|
8
|
Gómez AM, Lobo F, Uriel C, López JC. Recent Developments in the Ferrier Rearrangement. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300798] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Tatina M, Yousuf SK, Mukherjee D. 2,4,6-Trichloro-1,3,5-triazine (TCT) mediated one-pot sequential functionalisation of glycosides for the generation of orthogonally protected monosaccharide building blocks. Org Biomol Chem 2012; 10:5357-60. [DOI: 10.1039/c2ob25452b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Bourdreux Y, Lemétais A, Urban D, Beau JM. Iron(III) chloride-tandem catalysis for a one-pot regioselective protection of glycopyranosides. Chem Commun (Camb) 2011; 47:2146-8. [PMID: 21206947 DOI: 10.1039/c0cc04398b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tandem catalysis by using iron(III) chloride hexahydrate leads to carbohydrate building blocks displaying an orthogonal protecting group pattern as illustrated by the regioselective protection of trehalose and maltose disaccharides.
Collapse
Affiliation(s)
- Yann Bourdreux
- Université Paris-Sud, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux d'Orsay, F-91405 Orsay, France
| | | | | | | |
Collapse
|