1
|
Griwatz JH, Kessler ML, Wegner HA. Continuous-Flow Synthesis of Cycloparaphenylene Building Blocks on a Large Scale. Chemistry 2023; 29:e202302173. [PMID: 37534817 DOI: 10.1002/chem.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
The synthesis of [n]cycloparaphenylenes ([n]CPPs) and similar nanohoops is usually based on combining building blocks to a macrocyclic precursor, which is then aromatized in the final step. Access to those building blocks in large amounts will simplify the synthesis and studies of CPPs as novel functional materials for applications. Herein, we report a continuous-flow synthesis of key CPP building blocks by using versatile synthesis techniques such as electrochemical oxidation, lithiations and Suzuki cross-couplings in self-built reactors on up-to kilogram scale.
Collapse
Affiliation(s)
- Jan H Griwatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Mika L Kessler
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
2
|
Roy N, Das R, Paira R, Paira P. Different routes for the construction of biologically active diversely functionalized bicyclo[3.3.1]nonanes: an exploration of new perspectives for anticancer chemotherapeutics. RSC Adv 2023; 13:22389-22480. [PMID: 37501776 PMCID: PMC10369265 DOI: 10.1039/d3ra02003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023] Open
Abstract
Cancer is the second most high-morbidity disease throughout the world. From ancient days, natural products have been known to possess several biological activities, and research on natural products is one of the most enticing areas where scientists are engrossed in the extraction of valuable compounds from various plants to isolate many life-saving medicines, along with their other applications. It has been noticed that the bicyclo[3.3.1]nonane moiety is predominant in most biologically active natural products owing to its exceptional characteristics compared to others. Many derivatives of bicyclo[3.3.1]nonane are attractive to researchers for use in asymmetric catalysis or as potent anticancer entities along with their successful applications as ion receptors, metallocycles, and molecular tweezers. Therefore, this review article discusses several miscellaneous synthetic routes for the construction of bicyclo[3.3.1]nonanes and their heteroanalogues in association with the delineation of their anticancer activities with few selective compounds.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rishav Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rupankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| |
Collapse
|
3
|
Shiryaev VA, Sokolova IV, Gorbachova AM, Rybakov VB, Shiryaev AK, Klimochkin YN. Convenient synthesis of endo,endo- and endo,exo-bicyclo[3.3.1]nonane diamines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Tang Y, Xi S, Zhang J, Guo Z, Zu Y, Liu Y, Wang G. Facile Access to Spiro[4.5]decanes through Oxidative Dearomatization-Induced Ring Expansion of Cyclobutanes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A mechanistically interesting and practical method for the synthesis of functionalized spiro[4.5]decanes is developed, featuring oxidative dearomatization-induced ring expansion of cyclobutanes as the key element. The new method enables facile access to a variety of spiro[4.5]cyclohexadienones with good efficiency and generality. Further elaboration of the resulting products into other valuable scaffolds is also explored, leading to the discovery of an interesting compound that displays a promising biological profile. Moreover, we have also conducted a comprehensive computational study that provides a deep insight into the mechanism of the reaction.
Collapse
|
5
|
Ueda H, Wipf P, Nakamura H. Synthesis of sp 3-rich chiral bicyclo[3.3.1]nonanes for chemical space expansion and study of biological activities. Bioorg Med Chem 2021; 54:116561. [PMID: 34920311 DOI: 10.1016/j.bmc.2021.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Chiral sp3-rich bicyclo[3.3.1]nonane scaffolds 10-12 were synthesized as single diastereomers from aldehyde 9, which was prepared from 4,4-dimethoxycyclohexa-2,5-dienone through a copper-catalyzed enantioselective reduction. Three different types of intramolecular addition reactions were studied: SmI2-mediated reductive cyclization, base-promoted aldol reaction, and one-pot Mannich reaction. We succeeded in introducing three side-chains to scaffold 11 and construct an sp3-rich compound library in both enantiomeric variants by simply changing the chirality of the ligands. The biological evaluation revealed that all synthesized compounds exhibited a concentration-dependent inhibition of hypoxia-inducible factor-1 (HIF-1) transcriptional activity, with IC50 values in the range of 17.2-31.7 µM, whereas their effects on cell viability were varied (IC50 = 3.5 to > 100 µM). The most active compound 16f inhibits the accumulation of HIF-1α protein and mRNA in hypoxia, indicating that it has a mechanism of action distinctly different from other known compounds bearing the common bicyclo[3.3.1]nonane skeleton.
Collapse
Affiliation(s)
- Hiroki Ueda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8501, Japan
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8501, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8503, Japan.
| |
Collapse
|
6
|
Tong B, Belcher BP, Nomura DK, Maimone TJ. Chemical investigations into the biosynthesis of the gymnastatin and dankastatin alkaloids. Chem Sci 2021; 12:8884-8891. [PMID: 34257889 PMCID: PMC8246081 DOI: 10.1039/d1sc02613e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
Electrophilic natural products have provided fertile ground for understanding how nature inhibits protein function using covalent bond formation. The fungal strain Gymnascella dankaliensis has provided an especially interesting collection of halogenated cytotoxic agents derived from tyrosine which feature an array of reactive functional groups. Herein we explore chemical and potentially biosynthetic relationships between architecturally complex gymnastatin and dankastatin members, finding conditions that favor formation of a given scaffold from a common intermediate. Additionally, we find that multiple natural products can also be formed from aranorosin, a non-halogenated natural product also produced by Gymnascella sp. fungi, using simple chloride salts thus offering an alternative hypothesis for the origins of these compounds in nature. Finally, growth inhibitory activity of multiple members against human triple negative breast cancer cells is reported. Total synthesis sheds light on biosynthetic relationships among the chlorinated gymnastatin and dankastatin alkaloids.![]()
Collapse
Affiliation(s)
- Bingqi Tong
- Department of Chemistry, University of California-Berkeley Berkeley CA 94720 USA .,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, University of California-Berkeley Berkeley CA 94720 USA
| | - Bridget P Belcher
- Department of Chemistry, University of California-Berkeley Berkeley CA 94720 USA .,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, University of California-Berkeley Berkeley CA 94720 USA
| | - Daniel K Nomura
- Department of Chemistry, University of California-Berkeley Berkeley CA 94720 USA .,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, University of California-Berkeley Berkeley CA 94720 USA.,Departments of Nutritional Science and Toxicology, Cell and Molecular Biology, The Innovative Genomics Institute, University of California-Berkeley Berkeley CA 94720 USA
| | - Thomas J Maimone
- Department of Chemistry, University of California-Berkeley Berkeley CA 94720 USA .,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, University of California-Berkeley Berkeley CA 94720 USA
| |
Collapse
|
7
|
Nguyen LV, Beeler AB. Synthesis of Complex Stereoheptads en Route to Daphnane Diterpene Orthoesters. Org Lett 2018; 20:5177-5180. [DOI: 10.1021/acs.orglett.8b02124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Long V. Nguyen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Aaron B. Beeler
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Recent trends in ring opening of epoxides with sulfur nucleophiles. Mol Divers 2017; 22:191-205. [PMID: 29138964 DOI: 10.1007/s11030-017-9796-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Thiolysis of epoxides offers an efficient and simple synthetic approach to access [Formula: see text]-hydroxy sulfides which are valuable scaffold in the synthesis of various important molecules in medicinal chemistry. This review article presents a recent compilation of the synthetic approaches developed after 2000 for the thiolysis of epoxides.
Collapse
|
9
|
Li Z, Lam SM, Ip I, Wong WT, Chiu P. Rearrangements of α-Diazo-β-hydroxyketones for the Synthesis of Bicyclo[m.n.1]alkanones. Org Lett 2017; 19:4464-4467. [DOI: 10.1021/acs.orglett.7b01963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengning Li
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Shuk Mei Lam
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ignatius Ip
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Wing-tak Wong
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Pauline Chiu
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
10
|
Kotha S, Ali R, Srinivas V, Krishna NG. Diversity-oriented approach to spirocycles with indole moiety via Fischer indole cyclization, olefin metathesis and Suzuki–Miyaura cross-coupling reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Condensation reactions of guanidines with bis-electrophiles: Formation of highly nitrogenous heterocycles. Tetrahedron 2013; 69:7719-7731. [PMID: 23976798 DOI: 10.1016/j.tet.2013.04.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
2-Amino-1,4-dihydropyrimidines were reacted with bis-electrophiles to produce novel fused bi-pyrimidine, pyrimido-aminotriazine, and pyrimido-sulfonamide scaffolds. In addition, a quinazoline library was constructed using a guanidine Atwal-Biginelli reaction with 1-(quinazolin-2-yl)guanidines. The product heterocycles have novel constitutions with high nitrogen atom counts and represent valuable additions to screening libraries for the discovery of new modulators of biological targets.
Collapse
|
12
|
Ye Y, Fan R. Silver-catalyzed synthesis of 4-substituted benzofuransvia a cascade oxidative coupling-annulation protocol. Chem Commun (Camb) 2011; 47:5626-8. [DOI: 10.1039/c1cc10137d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of 4-indole benzofurans via an oxidative dearomatization, a silver-catalyzed cascade Michael addition-annulation, and an aromatization is reported.
Collapse
Affiliation(s)
- Yang Ye
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Renhua Fan
- Department of Chemistry
- Fudan University
- Shanghai
- China
| |
Collapse
|