1
|
Pecchini P, Fochi M, Bartoccini F, Piersanti G, Bernardi L. Enantioselective organocatalytic strategies to access noncanonical α-amino acids. Chem Sci 2024; 15:5832-5868. [PMID: 38665517 PMCID: PMC11041364 DOI: 10.1039/d4sc01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Organocatalytic asymmetric synthesis has evolved over the years and continues to attract the interest of many researchers worldwide. Enantiopure noncanonical amino acids (ncAAs) are valuable building blocks in organic synthesis, medicinal chemistry, and chemical biology. They are employed in the elaboration of peptides and proteins with enhanced activities and/or improved properties compared to their natural counterparts, as chiral catalysts, in chiral ligand design, and as chiral building blocks for asymmetric syntheses of complex molecules, including natural products. The linkage of ncAA synthesis and enantioselective organocatalysis, the subject of this perspective, tries to imitate the natural biosynthetic process. Herein, we present contemporary and earlier developments in the field of organocatalytic activation of simple feedstock materials, providing potential ncAAs with diverse side chains, unique three-dimensional structures, and a high degree of functionality. These asymmetric organocatalytic strategies, useful for forging a wide range of C-C, C-H, and C-N bonds and/or combinations thereof, vary from classical name reactions, such as Ugi, Strecker, and Mannich reactions, to the most advanced concepts such as deracemisation, transamination, and carbene N-H insertion. Concurrently, we present some interesting mechanistic studies/models, providing information on the chirality transfer process. Finally, this perspective highlights, through the diversity of the amino acids (AAs) not selected by nature for protein incorporation, the most generic modes of activation, induction, and reactivity commonly used, such as chiral enamine, hydrogen bonding, Brønsted acids/bases, and phase-transfer organocatalysis, reflecting their increasingly important role in organic and applied chemistry.
Collapse
Affiliation(s)
- Pietro Pecchini
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| |
Collapse
|
2
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
3
|
Otaka A. Development of Naturally Inspired Peptide and Protein Chemistry. Chem Pharm Bull (Tokyo) 2022; 70:748-764. [DOI: 10.1248/cpb.c22-00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
4
|
Shigenaga A. Development of Chemical Biology Tools Focusing on Peptide/Amide Bond Cleavage Reaction. Chem Pharm Bull (Tokyo) 2019; 67:1171-1178. [PMID: 31685746 DOI: 10.1248/cpb.c19-00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptides and proteins are involved in almost all biological events. In this review, three chemical biology tools, which were developed for peptide/protein sciences from a viewpoint of peptide/amide bond cleavage, are overviewed. First, study on an artificial amino acid that enables stimulus-responsive functional control of peptides/proteins is briefly described. Two N-S acyl transfer reaction-based tools, one a linker molecule for facile identification of target proteins of bioactive compounds and the other a reagent for selective labeling of proteins of interest, are then discussed.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
5
|
Shigenaga A. [Looking Back on Study Abroad at The Scripps Research Institute]. YAKUGAKU ZASSHI 2019; 139:221-228. [PMID: 30713231 DOI: 10.1248/yakushi.18-00169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Just after receiving my Ph.D. degree in 2004 from Tokushima University, under the supervision of Professor Masayuki Shibuya, I had the opportunity to work as a Research Associate in the laboratory of Professor Kim D. Janda at The Scripps Research Institute in the U.S., for about a year. Since it has already been more than 10 years since my time at Scripps, the specific research performed at that time may no longer be of interest to readers, but the benefit of working in a different research environment is timeless. Therefore, this paper describes not only details of the research conducted, but also the significance of working in a foreign country as a postdoc, and the subsequent influence those experiences at The Scripps Research Institute have had on my career.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
6
|
Lang JH, Jones PG, Lindel T. Total Synthesis of the Marine Natural Product Hemiasterlin by Organocatalyzed α-Hydrazination. Chemistry 2017; 23:12714-12717. [DOI: 10.1002/chem.201702812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Jan Hendrik Lang
- Institute of Organic Chemistry; Technical University Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institute of Inorganic and Analytical Chemistry; Technical University Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Thomas Lindel
- Institute of Organic Chemistry; Technical University Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
7
|
Pelit E, Oikonomou K, Gul M, Georgiou D, Szafert S, Katsamakas S, Hadjipavlou-Litina D, Elemes Y. α-Amination and the 5-exo-trig cyclization reaction of sulfur-containing Schiff bases with N -phenyltriazolinedione and their anti-lipid peroxidation activity. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Shigenaga A, Yamamoto J, Kohiki T, Inokuma T, Otaka A. Invention of stimulus-responsive peptide-bond-cleaving residue (Spr) and its application to chemical biology tools. J Pept Sci 2017; 23:505-513. [PMID: 28105728 DOI: 10.1002/psc.2961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
Elucidation of biological functions of peptides and proteins is essential for understanding peptide/protein-related biological events and developing drugs. Caged peptides and proteins that release a parent active peptide/protein by photo-irradiation have successfully been employed to elucidate the functions. Whereas the usual caged peptide/protein enables conversion of an inactive form to an active form (OFF-to-ON conversion) by photo-induced deprotection, photo-triggered main chain cleavage is reported to be applicable to ON-to-OFF conversion. These peptides and proteins are photo-responsive; however, if peptides and proteins could respond to other stimuli such as disease-related environment or enzymes, their range of application should be widened. To convert the photo-responsive peptide/protein into other stimulus-responsive peptide/protein, quite laborious de novo design and synthesis of the stimulus-responsive unit are required. In this context, we designed a stimulus-responsive peptide-bond-cleaving residue (Spr) in which the stimuli available for the main chain cleavage vary according to the choice of protecting groups on the residue. In this review, design and synthesis of Spr are introduced, and challenges to apply Spr to other fields to enable, for example, functional control, localization control, delivery of cargos, labeling of a protein of interest in living cells, and identification of target proteins of bioactive ligands are discussed. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Yamamoto
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Taiki Kohiki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| |
Collapse
|
9
|
Komiya C, Aihara K, Morishita K, Ding H, Inokuma T, Shigenaga A, Otaka A. Development of an Intein-Inspired Amide Cleavage Chemical Device. J Org Chem 2015; 81:699-707. [DOI: 10.1021/acs.joc.5b02399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chiaki Komiya
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keisuke Aihara
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Ko Morishita
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hao Ding
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
10
|
Guryev AA, Anokhin MV, Averin AD, Beletskaya IP. Polymer-immobilized α,α-bis[bis-3,5-(trifluoromethyl)phenyl]prolinol silyl ether: synthesis and application in the asymmetric α-amination of aldehydes. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Ötvös SB, Szloszár A, Mándity IM, Fülöp F. Heterogeneous Dipeptide-Catalyzed α-Amination of Aldehydes in a Continuous-Flow Reactor: Effect of Residence Time on Enantioselectivity. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Kita M, Yamamoto J, Morisaki T, Komiya C, Inokuma T, Miyamoto L, Tsuchiya K, Shigenaga A, Otaka A. Design and synthesis of a hydrogen peroxide-responsive amino acid that induces peptide bond cleavage after exposure to hydrogen peroxide. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yamamoto J, Denda M, Maeda N, Kita M, Komiya C, Tanaka T, Nomura W, Tamamura H, Sato Y, Yamauchi A, Shigenaga A, Otaka A. Development of a traceable linker containing a thiol-responsive amino acid for the enrichment and selective labelling of target proteins. Org Biomol Chem 2015; 12:3821-6. [PMID: 24806338 DOI: 10.1039/c4ob00622d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A traceable linker that is potentially applicable to identification of a target protein of bioactive compounds was developed. It enabled not only thiol-induced cleavage of the linker for enrichment of the target protein but also selective labelling to pick out the target from contaminated non-target proteins for facile identification.
Collapse
Affiliation(s)
- Jun Yamamoto
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Furutani M, Uemura A, Shigenaga A, Komiya C, Otaka A, Matsuura K. A photoinduced growth system of peptide nanofibres addressed by DNA hybridization. Chem Commun (Camb) 2015; 51:8020-2. [DOI: 10.1039/c5cc01452b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spatiotemporal control of peptide nanofibre growth was achieved by photocleavage of a DNA-conjugated β-sheet-forming peptide with a photoresponsive amino acid.
Collapse
Affiliation(s)
- Masahiro Furutani
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| | - Akihito Uemura
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| | - Akira Shigenaga
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Chiaki Komiya
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Akira Otaka
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Kazunori Matsuura
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| |
Collapse
|
15
|
Yamamoto J, Maeda N, Komiya C, Tanaka T, Denda M, Ebisuno K, Nomura W, Tamamura H, Sato Y, Yamauchi A, Shigenaga A, Otaka A. Development of a fluoride-responsive amide bond cleavage device that is potentially applicable to a traceable linker. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Taylor JE, Daniels DSB, Smith AD. Asymmetric NHC-Catalyzed Redox α-Amination of α-Aroyloxyaldehydes. Org Lett 2013; 15:6058-61. [DOI: 10.1021/ol402955f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- James E. Taylor
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
| | - David S. B. Daniels
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
| | - Andrew D. Smith
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
17
|
Shigenaga A. [Development of stimulus-responsive amino acids and their application to chemical biology use]. YAKUGAKU ZASSHI 2012; 132:1075-82. [PMID: 23023427 DOI: 10.1248/yakushi.132.1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An understanding of the physiological significance of peptides and proteins is indispensable in the fields of life sciences and drug development. Recently, methods for controlling peptide and protein activities using stimuli such as UV irradiation have been attracting much attention because of their potential for clarifying the physiological roles of the peptides/proteins. In this context, we have developed a stimulus-responsive amino acid that induces peptide-bond cleavage after exposure to a stimulus. Although it has previously been reported that stimulus-responsive units can respond to a specific stimulus, our stimulus-responsive amino acid is potentially applicable to any stimulus simply by changing the protective group. In this review, the design and synthesis of stimulus-responsive amino acids are described. Their applications in chemical biology, including their use for spatiotemporal control of the activity of peptides in living cells, are also reported.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan.
| |
Collapse
|
18
|
Shigenaga A, Ogura K, Hirakawa H, Yamamoto J, Ebisuno K, Miyamoto L, Ishizawa K, Tsuchiya K, Otaka A. Development of a Reduction-Responsive Amino Acid that Induces Peptide Bond Cleavage in Hypoxic Cells. Chembiochem 2012; 13:968-71. [DOI: 10.1002/cbic.201200141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 02/04/2023]
|
19
|
Levine MN, Raines RT. Trimethyl lock: A trigger for molecular release in chemistry, biology, and pharmacology. Chem Sci 2012; 3:2412-2420. [PMID: 23181187 PMCID: PMC3501758 DOI: 10.1039/c2sc20536j] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trimethyl lock is an o-hydroxydihydrocinnamic acid derivative in which unfavorable steric interactions between three pendant methyl groups encourage lactonization to form a hydrocoumarin. This reaction is extremely rapid, even when the electrophile is an amide and the leaving group is an amino group of a small-molecule drug, fluorophore, peptide, or nucleic acid. O-Acylation of the phenolic hydroxyl group prevents reaction, providing a trigger for the reaction. Thus, the release of an amino group from an amide can be coupled to the hydrolysis of a designated ester (or to another chemical reaction that regenerates the hydroxyl group). Trimethyl lock conjugates are easy to synthesize, making the trimethyl lock a highly versatile module for chemical biology and related fields.
Collapse
Affiliation(s)
- Michael N. Levine
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
20
|
|
21
|
Design and synthesis of caged ceramide: UV-responsive ceramide releasing system based on UV-induced amide bond cleavage followed by O–N acyl transfer. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|