1
|
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar Drugs 2023; 21:md21020063. [PMID: 36827104 PMCID: PMC9965070 DOI: 10.3390/md21020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Kovalerchik D, Zovko A, Hååg P, Sierakowiak A, Viktorsson K, Lewensohn R, Ilan M, Carmeli S. Cytotoxic Alkylynols of the Sponge Cribrochalina vasculum: Structure, Synthetic Analogs and SAR Studies. Mar Drugs 2022; 20:md20040265. [PMID: 35447938 PMCID: PMC9032987 DOI: 10.3390/md20040265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
A series of twenty-three linear and branched chain mono acetylene lipids were isolated from the Caribbean Sea sponge Cribrochalina vasculum. Seventeen of the compounds, 1–17, are new, while six, 18–23, were previously characterized from the same sponge. Some of the new acetylene-3-hydroxy alkanes 1, 6, 7, 8, 10 were tested for selective cytotoxicity in non-small cell lung carcinoma (NSCLC) cells over WI-38 normal diploid lung fibroblasts. Compound 7, presented clear tumor selective activity while, 1 and 8, showed selectivity at lower doses and 6 and 10, were not active towards NSCLC cells at all. The earlier reported selective cytotoxicity of some acetylene-3-hydroxy alkanes (scal-18 and 23), in NSCLC cells and/or other tumor cell types were also confirmed for 19, 20 and 22. To further study the structure activity relationships (SAR) of this group of compounds, we synthesized several derivatives of acetylene-3-hydroxy alkanes, rac-18, scal-S-18, R-18, rac-27, rac-32, R-32, S-32, rac-33, rac-41, rac-42, rac-43, rac-45, rac-48 and rac-49, along with other 3-substituted derivatives, rac-35, rac-36, rac-37, rac-38, rac-39 and rac-40, and assessed their cytotoxic activity against NSCLC cells and diploid fibroblasts. SAR studies revealed that the alcohol moiety at position 3 and its absolute R configuration both were essential for the tumor cell line selective activity while for its cytotoxic magnitude the alkyl chain length and branching were of less significance.
Collapse
Affiliation(s)
- Dimitry Kovalerchik
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Ana Zovko
- Department of Oncology-Pathology, Karolinska Institute, SE-171 64 Solna, Sweden; (A.Z.); (P.H.); (A.S.); (K.V.); (R.L.)
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institute, SE-171 64 Solna, Sweden; (A.Z.); (P.H.); (A.S.); (K.V.); (R.L.)
| | - Adam Sierakowiak
- Department of Oncology-Pathology, Karolinska Institute, SE-171 64 Solna, Sweden; (A.Z.); (P.H.); (A.S.); (K.V.); (R.L.)
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institute, SE-171 64 Solna, Sweden; (A.Z.); (P.H.); (A.S.); (K.V.); (R.L.)
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institute, SE-171 64 Solna, Sweden; (A.Z.); (P.H.); (A.S.); (K.V.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Shmuel Carmeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel;
- Correspondence: ; Tel.: +972-3-6408550
| |
Collapse
|
4
|
Li C, Shi D. Structural and Bioactive Studies of Halogenated Constituents from Sponges. Curr Med Chem 2020; 27:2335-2360. [PMID: 30417770 DOI: 10.2174/0929867325666181112092159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
Marine organisms are abundant sources of bioactive natural products. Among metabolites produced by sponges and their associated microbial communities, halogenated natural compounds accounted for an important part due to their potent biological activities. The present review updates and compiles a total of 258 halogenated organic compounds isolated in the past three decades, especially brominated derivatives derived from 31 genera of marine sponges. These compounds can be classified as the following classes: brominated polyunsaturated lipids, nitrogen compounds, brominated tyrosine derivatives and other halogenated compounds. These substances were listed together with their source organisms, structures and bioactivities. For this purpose, 84 references were consulted.
Collapse
Affiliation(s)
- Chao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Bayona LM, van Leeuwen G, Erol Ö, Swierts T, van der Ent E, de Voogd NJ, Choi YH. Influence of Geographical Location on the Metabolic Production of Giant Barrel Sponges ( Xestospongia spp.) Revealed by Metabolomics Tools. ACS OMEGA 2020; 5:12398-12408. [PMID: 32548424 PMCID: PMC7271412 DOI: 10.1021/acsomega.0c01151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Despite their high therapeutic potential, only a limited number of approved drugs originate from marine natural products. A possible reason for this is their broad metabolic variability related to the environment, which can cause reproducibility issues. Consequently, a further understanding of environmental factors influencing the production of metabolites is required. Giant barrel sponges, Xestospongia spp., are a source of many new compounds and are found in a broad geographical range. In this study, the relationship between the metabolome and the geographical location of sponges within the genus Xestospongia spp. was investigated. One hundred and thirty-nine specimens of giant barrel sponges (Xestospongia spp.) collected in four locations, Martinique, Curaçao, Taiwan, and Tanzania, were studied using a multiplatform metabolomics methodology (nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry). A clear grouping of the collected samples according to their location was shown. Metabolomics analysis revealed that sterols and various fatty acids, including polyoxygenated and brominated derivatives, were related to the differences in locations. To explore the relationship between observed metabolic changes and their bioactivity, antibacterial activity was assessed against Escherichia coli and Staphylococcus aureus. The activity was found to correlate with brominated fatty acids. These were isolated and identified as (9E,17E)-18-bromooctadeca-9,17-dien-5,7,15-triynoic acid (1), xestospongic acid (2), (7E,13E,15Z)-14,16-dibromohexadeca-7,13,15-trien-5-ynoic acid (3), and two previously unreported compounds.
Collapse
Affiliation(s)
- Lina M. Bayona
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gemma van Leeuwen
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Özlem Erol
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Thomas Swierts
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Esther van der Ent
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Nicole J. de Voogd
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- College
of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, 02447 Seoul, Republic
of Korea
| |
Collapse
|
6
|
Abstract
So far, over 150 natural products and pharmaceuticals containing an allene moiety have been identified. During the last two decades, allenes have also been demonstrated as synthetically versatile starting materials in organic synthesis. In comparison to alkenes and alkynes, allenes are unique unsaturated hydrocarbons due to their axial chirality, which could be transformed to central chirality via chirality transfer to provide an irreplaceable entry to chiral molecules. Thus, methods for allene synthesis from readily available chemicals are of great interest. In 1979, Crabbé et al. reported the first CuBr-mediated allenation of terminal alkynes (ATA) reaction to form monosubstituted allenes from 1-alkynes and paraformaldehyde in the presence of diisopropylamine. During the following 30 years, the ATA reactions were limited to paraformaldehyde. This Account describes our efforts toward the development of ATA reactions in the last ten years. First, we improved the yields and scope greatly for the synthesis of monosubstituted allenes by modifying the original Crabbé recipe. Next we developed the ZnI2-promoted or CuI-catalyzed ATA reactions for the synthesis of 1,3-disubstituted allenes from terminal alkyne and normal aldehydes. Furthermore, we first realized the CdI2-promoted ATA reaction of ketones with pyrrolidine as the matched amine for the preparation of trisubstituted allenes. Due to the toxicity of CdI2, we also developed two alternative approaches utilizing CuBr/ZnI2 or CuI/ZnBr2/Ti(OEt)4. The asymmetric version of ATA reactions for the synthesis of optically active 1,3-disubstituted allenes has also been achieved in this group with two strategies. One is called "chiral ligand" strategy, using terminal alkynes, aldehydes, and nonchiral amine with the assistance of a proper chiral ligand. The other is the "chiral amine" strategy, applying terminal alkynes, aldehydes, and chiral amines such as ( S)- or ( R)-α,α-diphenylprolinol or ( S)- or ( R)-α,α-dimethylprolinol. Optically active 1,3-disubstituted allenes containing different synthetically useful functionalities such as alcohol, amide, sulfamide, malonate, carboxylate, and carbohydrate units could be prepared without protection with the newly developed CuBr2-catalyzed chiral amine strategy. Recently, we have applied these enantioselective allenation of terminal alkyne (EATA) reactions to the syntheses of some natural allenes such as laballenic acid, insect pheromone, methyl ( R)-8-hydroxyocta-5,6-dienoate, phlomic acid, and lamenallenic acid, as well as some non-allene natural γ-butyrolactones such as xestospongienes (E, F, G, and H), ( R)-4-tetradecalactone, ( S)-4-tetradecalactone, ( R)-γ-palmitolactone, and ( R)-4-decalactone.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Gold-catalyzed stereoselective cycloisomerization of allenoic acids for two types of common natural γ-butyrolactones. Nat Commun 2018; 9:1654. [PMID: 29695784 PMCID: PMC5916948 DOI: 10.1038/s41467-018-03894-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
γ-(E)-Vinylic and γ-alkylic γ-butyrolactones are two different types of lactones existing extensively in animals and plants and many of them show interesting biological activities. Nature makes alkylic γ-butyrolactones by many different enzymatic lactonization processes. Scientists have been mimicking the natural strategy by developing new catalysts. However, direct and efficient access to γ-(E)-vinylic γ-butyrolactones is still extremely limited. Here, we wish to present our modular allene approach, which provides an efficient asymmetric approach to (E)-vinylic γ-butyrolactones from allenoic acids by identifying a new gold complex as the catalyst. Based on this cycloisomerization strategy, the first syntheses of racemic xestospongiene and xestospongienes E, F, G, and H have been realized and the absolute configurations of the chiral centers in xestospongienes E and F have been revised. In addition, by applying a C–O bond cleavage-free hydrogenation, the syntheses of naturally occurring γ-alkylic γ-lactones, (R)-4-tetradecalactone, (S)-4-tetradecalactone, (R)-γ-palmitolactone, and (R)-4-decalactone, have also been achieved. Gamma-butyrolactones are widespread in Nature, however direct catalytic methods to access them are limited. Here, the authors report a gold-catalyzed cycloisomerization of allenoic acids to acces γ-butyrolactones and apply it to the asymmetric synthesis of xestospongienes E, F, G, and H and other naturally occurring lactones.
Collapse
|
8
|
Burns AS, Ross CC, Rychnovsky SD. Heteroatom-Directed Acylation of Secondary Alcohols To Assign Absolute Configuration. J Org Chem 2018; 83:2504-2515. [PMID: 29424546 DOI: 10.1021/acs.joc.7b03156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Birman's HBTM catalyst is effective for the enantioselective acylation and kinetic resolution of benzylic secondary alcohols. The enantioselective acylation has now been extended to secondary alcohols bearing electron-withdrawing groups such as halides and other heteroatoms. The level of selectivity is modest to good and is sufficient for determining configuration using the competing enantioselective conversion method. A mathematical analysis identifies conditions for achieving maximum differences in conversion and, consequently, assigning configuration with greater confidence. The new method is effective for halohydrins and secondary-tertiary 1,2-diols and was used to confirm the configuration of two inoterpene natural products.
Collapse
Affiliation(s)
- Alexander S Burns
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine , Irvine, California 92697, United States
| | - Christopher C Ross
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine , Irvine, California 92697, United States
| | - Scott D Rychnovsky
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine , Irvine, California 92697, United States
| |
Collapse
|
9
|
Brominated Polyunsaturated Lipids and Steroids From the South China Sea Sponge Haliclona subarmigera. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1802-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
He WF, Xue DQ, Yao LG, Li J, Liu HL, Guo YW. A new bioactive steroidal ketone from the South China Sea sponge Xestospongia testudinaria. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 18:195-199. [PMID: 26289715 DOI: 10.1080/10286020.2015.1056521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
A new steroidal ketone (1), with an ergosta-22,25-diene side chain, was obtained from the South China Sea marine sponge Xestospongia testudinaria. The structure of 1 was determined on the basis of detailed spectroscopic analysis and by comparison with literature. Compound 1 exhibited significant inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a key target for the treatment of type II diabetes and obesity, with an IC50 value of 4.27 ± 0.55 μM, which is comparable with the positive control oleanolic acid (IC50 = 2.63 ± 0.22 μM).
Collapse
Affiliation(s)
- Wen-Fei He
- a School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035 , China
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Duo-Qing Xue
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Li-Gong Yao
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jia Li
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Hai-Li Liu
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yue-Wei Guo
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
11
|
He WF, Liang LF, Cai YS, Gao LX, Li YF, Li J, Liu HL, Guo YW. Brominated polyunsaturated lipids with protein tyrosine phosphatase-1B inhibitory activity from Chinese marine sponge Xestospongia testudinaria. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:861-866. [PMID: 25832997 DOI: 10.1080/10286020.2015.1026334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new brominated polyunsaturated lipid, methyl (E,E)-14,14-dibromo-4,6,13-tetradecatrienoate (1), along with three known related analogues (2-4), were isolated from the Et2O-soluble portion of the acetone extract of Chinese marine sponge Xestospongia testudinaria treated with diazomethane. The structure of the new compound was elucidated by detailed spectroscopic analysis and by comparison with literature data. Compound 3 exhibited significant inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a key target for the treatment of type II diabetes and obesity, with an IC50 value of 5.30 ± 0.61 μM, when compared to the positive control oleanolic acid (IC50 = 2.39 ± 0.26 μM).
Collapse
Affiliation(s)
- Wen-Fei He
- a School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035 , China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou ZF, Menna M, Cai YS, Guo YW. Polyacetylenes of marine origin: chemistry and bioactivity. Chem Rev 2014; 115:1543-96. [PMID: 25525670 DOI: 10.1021/cr4006507] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhen-Fang Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Zu Chong Zhi Road 555, Shanghai 201203, China
| | | | | | | |
Collapse
|
13
|
Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors. Eur J Med Chem 2014; 79:290-7. [DOI: 10.1016/j.ejmech.2014.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/19/2022]
|
14
|
Abstract
This review covers the literature published in 2011 for marine natural products, with 870 citations (558 for the period January to December 2011) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1152 for 2011), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
|
17
|
|
18
|
Lai D, Yu S, van Ofwegen L, Totzke F, Proksch P, Lin W. 9,10-Secosteroids, protein kinase inhibitors from the Chinese gorgonian Astrogorgia sp. Bioorg Med Chem 2011; 19:6873-80. [DOI: 10.1016/j.bmc.2011.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 01/06/2023]
|
19
|
Liu D, Xu J, Jiang W, Deng Z, de Voogd NJ, Proksch P, Lin W. Xestospongienols A-L, Brominated Acetylenic Acids from the Chinese Marine Sponge Xestospongia testudinaria. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201100015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Zhou X, Lu Y, Lin X, Yang B, Yang X, Liu Y. Brominated aliphatic hydrocarbons and sterols from the sponge Xestospongia testudinaria with their bioactivities. Chem Phys Lipids 2011; 164:703-6. [PMID: 21864515 DOI: 10.1016/j.chemphyslip.2011.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022]
Abstract
Four brominated aliphatic hydrocarbons (1-4), including a novel brominated ene-tetrahydrofuran named as mutafuran H (1), and five sterols (5-9) were isolated from the South China Sea sponge Xestospongia testudinaria. The structure of 1 was determined on the basis of NMR ((1)H, (13)C NMR, HSQC, HMBC, (1)H-(1)H COSY, and NOESY), MS, and optical rotation analysis. Known compounds were identified by comparison of their NMR data with those reported in the literature. Compounds 1-4, and 6-9 were evaluated for their toxicity against Artemia salina larvae, and anti-acetylcholinesterase activity.
Collapse
Affiliation(s)
- Xuefeng Zhou
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | | | | | |
Collapse
|