1
|
Farrokh M, Hajjami M, Zolfigol MA, Jalali-Mola S. Catalytic Application of Biochar Functionalized Copper-l-histidine for the Chemo and Homoselective Conversion of Cyanides to Amides and Reduction of Nitroarenes to anilines. ACS OMEGA 2024; 9:47811-47821. [PMID: 39651105 PMCID: PMC11618395 DOI: 10.1021/acsomega.4c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
In our study, we aimed to use olive pomace, food industry waste, as biomass to produce biochar nanoparticles. The surface of the biochar was functionalized with the l-histidine ligand, and then cupric acetate was added to prepare Cu-l-histidine@biochar as a final catalyst for the chemo- and homoselective synthesis of amide and aniline derivatives. To characterize the novel catalyst, we employed various techniques. Another notable feature of this catalyst is its reusability, which maintained significant efficiency even after multiple uses in reactions.
Collapse
Affiliation(s)
- Mahrokh Farrokh
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Maryam Hajjami
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Sepideh Jalali-Mola
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| |
Collapse
|
2
|
Pocock E, Diefenbach M, Hood TM, Nunn M, Richards E, Krewald V, Webster RL. Synthetic and Mechanistic Studies into the Reductive Functionalization of Nitro Compounds Catalyzed by an Iron(salen) Complex. J Am Chem Soc 2024; 146:19839-19851. [PMID: 38995168 PMCID: PMC11273354 DOI: 10.1021/jacs.4c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
We report on the use of a simple, bench-stable [Fe(salen)2]-μ-oxo precatalyst in the reduction of nitro compounds. The reaction proceeds at room temperature across a range of substrates, including nitro aromatics and aliphatics. By changing the reducing agent from pinacol borane (HBpin) to phenyl silane (H3SiPh), we can chemoselectively reduce nitro compounds while retaining carbonyl functionality. Our mechanistic studies, which include kinetics, electron paramagnetic resonance (EPR), mass spectrometry, and quantum chemistry, indicate the presence of a nitroso intermediate and the generation of an on-cycle iron hydride as a key catalytic intermediate. Based on this mechanistic insight, we were able to extend the chemistry to hydroamination and identified a simple substrate feature (alkene lowest unoccupied molecular orbital (LUMO) energy) that could be used to predict which alkenes would result in productive catalysis.
Collapse
Affiliation(s)
- Emily Pocock
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Thomas M. Hood
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Michael Nunn
- Early
Chemical Development, Pharmaceutical Sciences,
Biopharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Emma Richards
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Vera Krewald
- Department
of Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Ruth L. Webster
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Akhtar N, Chauhan M, Rana B, Thadhani C, Kalita R, Begum W, Ghosh B, Manna K. Selective Reduction of Nitro Compounds by Organosilanes Catalyzed by a Zirconium Metal-Organic Framework Supported Salicylaldimine-Cobalt(II) Complex. Chempluschem 2024; 89:e202300520. [PMID: 37930953 DOI: 10.1002/cplu.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Reducing nitro compounds to amines is a fundamental reaction in producing valuable chemicals in industry. Herein, the synthesis and characterization of a zirconium metal-organic framework-supported salicylaldimine-cobalt(II) chloride (salim-UiO-CoCl) and its application in catalytic reduction of nitro compounds are reported. Salim-UiO-Co displayed excellent catalytic activity in chemoselective reduction of aromatic and aliphatic nitro compounds to the corresponding amines in the presence of phenylsilane as a reducing agent under mild reaction conditions. Salim-UiO-Co catalyzed nitro reduction had a broad substrate scope with excellent tolerance to diverse functional groups, including easily reducible ones such as aldehyde, keto, nitrile, and alkene. Salim-UiO-Co MOF catalyst could be recycled and reused at least 14 times without noticeable losing activity and selectivity. Density functional theory (DFT) studies along with spectroscopic analysis were employed to get into a comprehensive investigation of the reaction mechanism. This work underscores the significance of MOF-supported single-site base-metal catalysts for the sustainable and cost-effective synthesis of chemical feedstocks and fine chemicals.
Collapse
Affiliation(s)
- Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Biplab Ghosh
- BARC Beamlines Section, Indus-2, RRCAT, Indore, 452013, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
4
|
Gioftsidou DK, Kallitsakis MG, Kavaratzi K, Hatzidimitriou AG, Terzidis MA, Lykakis IN, Angaridis PA. Synergy of redox-activity and hemilability in thioamidato cobalt(III) complexes for the chemoselective reduction of nitroarenes to anilines: catalytic and mechanistic investigation. Dalton Trans 2024; 53:1469-1481. [PMID: 38126463 DOI: 10.1039/d3dt02923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Reduction of nitro-compounds to amines is one of the most often employed and challenging catalytic processes in the fine and bulk chemical industry. Herein, we present two series of mononuclear homoleptic and heteroleptic Co(III) complexes, i.e., [Co(LNS)3] and [Co(LNS)2L1L2]x+, respectively (x = 0 or 1, LNS = pyrimidine- or pyridine-thioamidato, L1/L2 = thioamidato, phosphine or pyridine), which successfully catalyze the transformation of nitroarenes to anilines by methylhydrazine. The catalytic reaction can be accomplished for a range of electronically and sterically diverse nitroarenes, using mild experimental conditions and low catalyst loadings, resulting in the corresponding anilines in high yields, with high chemoselectivity, and no side-products. Electronic and steric properties of the ligands play pivotal role in the catalytic efficacy of the respective complexes. In particular, complexes bearing ligands of high hemilability/lability and being capable of stabilizing lower metal oxidation-states exhibit the highest catalytic activity. Mechanistic investigations suggest the participation of the Co(III) complexes in two parallel reaction pathways: (a) coordination-induced activation of methylhydrazine and (b) reduction of nitroarenes to anilines by methylhydrazine, through the formation of Co(I) and Co-hydride intermediates.
Collapse
Affiliation(s)
- Dimitra K Gioftsidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Michael G Kallitsakis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Konstantina Kavaratzi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Michael A Terzidis
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, 57400 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Wei S, Sang Z, Zhang Y, Wang H, Chen Y, Liu H, Wang S, Tan H. Peniciriols A and B, two new citrinin derivatives from an endophytic fungus Penicillum citrinum TJNZ-27. Fitoterapia 2023; 169:105572. [PMID: 37315718 DOI: 10.1016/j.fitote.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Two undescribed citrinin derivatives, named peniciriols A-B (1-2), together with six known compounds were isolated from endophytic fungus Penicillum citrinum TJNZ-27. The structures of two new compounds were well established by the detail interpretation of NMR and HRESIMS data as well as ECD measurement powered by molecular calculation. Among them, compound 1 shared an unprecedented dimerized citrinin skeleton with the formation of an intriguing 9H-xanthene ring system, whereas compound 2 possess a highly substituted phenylacetic acid skeleton, which was rarely-occurring in natural secondary metabolites. Moreover, these novel compounds were tested for cytotoxic and antibacterial activities, whereas these novel compounds did not exhibit any noticeable cytotoxic or antibacterial activities.
Collapse
Affiliation(s)
- Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zihuan Sang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huan Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China
| | - Yan Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China.
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China.
| |
Collapse
|
6
|
Schreiber E, Brennessel WW, Matson EM. Charge-State Dependence of Proton Uptake in Polyoxovanadate-alkoxide Clusters. Inorg Chem 2022; 61:4789-4800. [PMID: 35293218 PMCID: PMC8965876 DOI: 10.1021/acs.inorgchem.1c02937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Here, we present an investigation of the thermochemistry of proton uptake in acetonitrile across three charge states of a polyoxovanadate-alkoxide (POV-alkoxide) cluster, [V6O7(OMe)12]n (n = 2-, 1-, and 0). The vanadium oxide assembly studied features bridging sites saturated by methoxide ligands, isolating protonation to terminal vanadyl moieties. Exposure of [V6O7(OMe)12]n to organic acids of appropriate strength results in the protonation of a terminal V═O bond, generating the transient hydroxide-substituted POV-alkoxide cluster [V6O6(OH)(OMe)12]n+1. Evidence for this intermediate proved elusive in our initial report, but here we present the isolation of a divalent anionic cluster that features hydrogen bonding to dimethylammonium at the terminal oxo site. Degradation of the protonated species results in the formation of equimolar quantities of one-electron-oxidized and oxygen-atom-efficient complexes, [V6O7(OMe)12]n+1 and [V6O6(OMe)12]n+1. While analogous reactivity was observed across the three charge states of the cluster, a dependence on the acid strength was observed, suggesting that the oxidation state of the vanadium oxide assembly influences the basicity of the cluster surface. Spectroscopic investigations reveal sigmoidal relationships between the acid strength and cluster conversion across the redox series, allowing for determination of the proton affinity of the surface of the cluster in all three charge states. The fully reduced cluster is found to be the most basic, with higher oxidation states of the assembly possessing substantially reduced proton affinities (∼7 pKa units per electron). These results further our understanding of the site-specific reactivity of terminal M═O bonds with protons in an organic solvent, revealing design criteria for engineering functional surfaces of metal oxide materials of relevance to energy storage and conversion.
Collapse
Affiliation(s)
- Eric Schreiber
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
7
|
Zhou J, Hou W, Liu X, Astruc D. Pd, Rh and Ru Nanohybrid-catalyzed Tetramethyldisiloxane Hydroysis for H2 Generation, Nitrophenol Reduction and Suzuki-Miyaura Cross-Coupling. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00035k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrolysis of tetramethyldisiloxane, which is a silicone industrial refuse, provides a convenient method to generates H2 on demand. Herein, the highly selective and efficient 2D graphene-like carbon nanosheets (GCN)...
Collapse
|
8
|
Gudun KA, Zakarina R, Segizbayev M, Hayrapetyan D, Slamova A, Khalimon AY. Cobalt‐Catalyzed Deoxygenative Hydroboration of Nitro Compounds and Applications to One‐Pot Synthesis of Aldimines and Amides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristina A. Gudun
- Department of Chemistry School of Sciences and Humanities Nazarbayev University 53 Kabanbay Batyr Avenue Nur-Sultan 010000 Kazakhstan
| | - Raikhan Zakarina
- Department of Chemistry School of Sciences and Humanities Nazarbayev University 53 Kabanbay Batyr Avenue Nur-Sultan 010000 Kazakhstan
| | - Medet Segizbayev
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way St. Catharines Niagara Region L2S 3A1 ON Canada
| | - Davit Hayrapetyan
- Department of Chemistry School of Sciences and Humanities Nazarbayev University 53 Kabanbay Batyr Avenue Nur-Sultan 010000 Kazakhstan
| | - Ainur Slamova
- Core Facilities Nazarbayev University 53 Kabanbay Batyr Avenue Nur-Sultan 010000 Kazakhstan
| | - Andrey Y. Khalimon
- Department of Chemistry School of Sciences and Humanities Nazarbayev University 53 Kabanbay Batyr Avenue Nur-Sultan 010000 Kazakhstan
- The Environment and Resource Efficiency Cluster (EREC) Nazarbayev University 53 Kabanbay Batyr Avenue Nur-Sultan 010000 Kazakhstan
| |
Collapse
|
9
|
Conejo-Dávila AS, Moya-Quevedo MA, Chávez-Flores D, Vega-Rios A, Zaragoza-Contreras EA. Role of the Anilinium Ion on the Selective Polymerization of Anilinium 2-Acrylamide-2-methyl-1-propanesulfonate. Polymers (Basel) 2021; 13:polym13142349. [PMID: 34301106 PMCID: PMC8309539 DOI: 10.3390/polym13142349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023] Open
Abstract
The development of anilinium 2-acrylamide-2-methyl-1-propanesulfonate (Ani-AMPS) monomer, confirmed by 1H NMR, 13C NMR, and FTIR, is systematically studied. Ani-AMPS contains two polymerizable functional groups, so it was submitted to selective polymerization either by free-radical or oxidative polymerization. Therefore, poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonic) [Poly(Ani-AMPS)] and polyaniline doped with 2-acrylamide-2-methyl-1-propanesulfonic acid [PAni-AMPS] can be obtained. First, the acrylamide polymer, poly(Ani-AMPS), favored the π-stacking of the anilinium group produced by the inter- and intra-molecular interactions and was studied utilizing 1H NMR, 13C NMR, FTIR, and UV-Vis-NIR. Furthermore, poly(Ani-AMPS) fluorescence shows quenching in the presence of Fe2+ and Fe3+ in the emission spectrum at 347 nm. In contrast, the typical behavior of polyaniline is observed in the cyclic voltammetry analysis for PAni-AMPS. The optical properties also show a significant change at pH 4.4. The PAni-AMPS structure was corroborated through FTIR, while the thermal properties and morphology were analyzed utilizing TGA, DSC (except PAni-AMPS), and FESEM.
Collapse
Affiliation(s)
- Alain Salvador Conejo-Dávila
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico; (A.S.C.-D.); (M.A.M.-Q.)
| | - Marco Armando Moya-Quevedo
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico; (A.S.C.-D.); (M.A.M.-Q.)
| | - David Chávez-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua C.P. 31125, Mexico;
| | - Alejandro Vega-Rios
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico; (A.S.C.-D.); (M.A.M.-Q.)
- Correspondence: (A.V.-R.); (E.A.Z.-C.)
| | - Erasto Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico; (A.S.C.-D.); (M.A.M.-Q.)
- Correspondence: (A.V.-R.); (E.A.Z.-C.)
| |
Collapse
|
10
|
Wu J, Tongdee S, Ammaiyappan Y, Darcel C. A Concise Route to Cyclic Amines from Nitroarenes and Ketoacids under Iron‐Catalyzed Hydrosilylation Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajun Wu
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Satawat Tongdee
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Yuvaraj Ammaiyappan
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Christophe Darcel
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| |
Collapse
|
11
|
Krishnan S, Patel PN, Balasubramanian KK, Chadha A. Yeast supported gold nanoparticles: an efficient catalyst for the synthesis of commercially important aryl amines. NEW J CHEM 2021. [DOI: 10.1039/d0nj04542j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High yielding synthesis of industrially important aryl amines from nitroarenes using yeast supported gold nanoparticles as a sustainable catalyst.
Collapse
Affiliation(s)
- Saravanan Krishnan
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Paresh N. Patel
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Kalpattu K. Balasubramanian
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Anju Chadha
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
12
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
13
|
Potter M, Najer A, Klöckner A, Zhang S, Holme MN, Nele V, Che J, Massi L, Penders J, Saunders C, Doutch JJ, Edwards AM, Ces O, Stevens MM. Controlled Dendrimersome Nanoreactor System for Localized Hypochlorite-Induced Killing of Bacteria. ACS NANO 2020; 14:17333-17353. [PMID: 33290039 PMCID: PMC7760217 DOI: 10.1021/acsnano.0c07459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (-OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as -OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating -OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth.
Collapse
Affiliation(s)
- Michael Potter
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Chemistry and Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K.
| | - Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Anna Klöckner
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- MRC
Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Shaodong Zhang
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Margaret N. Holme
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Valeria Nele
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Junyi Che
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Lucia Massi
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - James J. Doutch
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Source, STFC, Didcot OX11 ODE, U.K.
| | - Andrew M. Edwards
- MRC
Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Oscar Ces
- Department
of Chemistry and Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
14
|
Saito K, Ito T, Arata S, Sunada Y. Four‐Coordinated Manganese(II) Disilyl Complexes for the Hydrosilylation of Aldehydes and Ketones with 1,1,3,3‐Tetramethyldisiloxane. ChemCatChem 2020. [DOI: 10.1002/cctc.202001522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kyoka Saito
- Department of Applied Chemistry Faculty of Science and Engineering Chuo University 1-13-27 Kasuga Bunkyo-ku Tokyo Japan
| | - Tatsuyoshi Ito
- Kanagawa Institute of Industrial Science and Technology (KISTEC) 4-6-1 Komaba Meguro-ku Tokyo Japan
| | - Shogo Arata
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
| | - Yusuke Sunada
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
| |
Collapse
|
15
|
Wu J, Darcel C. Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis of Imines and Aza Heterocycles. J Org Chem 2020; 86:1023-1036. [DOI: 10.1021/acs.joc.0c02505] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajun Wu
- UnivRennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Christophe Darcel
- UnivRennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| |
Collapse
|
16
|
Xu F, Chen J, Xie X, Cheng P, Yu Z, Su W. Synthesis of a Crizotinib Intermediate via Highly Efficient Catalytic Hydrogenation in Continuous Flow. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Feng Xu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianli Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxuan Xie
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pengfei Cheng
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiqun Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weike Su
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
17
|
Gao Y, Yang S, Huo Y, Hu X. Recent Progress on Reductive Coupling of Nitroarenes by Using Organosilanes as Convenient Reductants. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Simin Yang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Xiao‐Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science School of Chemistry and Materials Science South-Central University for Nationalities Wuhan 430074 People's Republic of China
| |
Collapse
|
18
|
Shaikh NS. Sustainable Amine Synthesis: Iron Catalyzed Reactions of Hydrosilanes with Imines, Amides, Nitroarenes and Nitriles. ChemistrySelect 2019. [DOI: 10.1002/slct.201900460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nadim S. Shaikh
- Department of Chemistry Eurofins Advinus Ltd., 21 & 22, Phase II, Peenya Industrial State Bengaluru 560058 India
| |
Collapse
|
19
|
Wei D, Netkaew C, Darcel C. Multi-Step Reactions Involving Iron-Catalysed Reduction and Hydrogen Borrowing Reactions. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duo Wei
- Univ Rennes; CNRS, ISCR, UMR 6226; 35000 Rennes France
| | | | | |
Collapse
|
20
|
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
21
|
Formenti D, Ferretti F, Scharnagl FK, Beller M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chem Rev 2018; 119:2611-2680. [PMID: 30516963 DOI: 10.1021/acs.chemrev.8b00547] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni, and Cu has led to their tremendous achievements over the last years prompting their greater application as "standard" catalysts. In this review, we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages.
Collapse
Affiliation(s)
- Dario Formenti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Francesco Ferretti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Florian Korbinian Scharnagl
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| |
Collapse
|
22
|
Wang Y, Ren S, Zhang W, Xue B, Qi X, Sun H, Li X, Fuhr O, Fenske D. Syntheses of hydrido selenophenolato iron(II) complexes and their catalytic application in hydrosilylation of aldehydes and ketones. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Lopes R, Pereira MM, Royo B. Selective Reduction of Nitroarenes with Silanes Catalyzed by Nickel N-Heterocyclic Carbene Complexes. ChemCatChem 2017. [DOI: 10.1002/cctc.201700218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rita Lopes
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier; Av. da República 2780-157 Oeiras Portugal
| | - Mariette M. Pereira
- CQC, Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier; Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
24
|
|
25
|
He S, Niu H, Zeng T, Wang S, Cai Y. A Facile and Efficient Method for Continuous Reduction of Nitroaromatic Compounds Through the Cyclic Transformation Between Fe(II)-complexes and Nano Zero-valent Iron. ChemistrySelect 2016. [DOI: 10.1002/slct.201600407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sijing He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; P.O. Box 2871 Beijing 100085 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; P.O. Box 2871 Beijing 100085 China
| | - Tao Zeng
- College of Environment; Zhejiang University of Technology; Hangzhou 310032 China
| | - Saihua Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; P.O. Box 2871 Beijing 100085 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; P.O. Box 2871 Beijing 100085 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
26
|
Shi C, Ren C, Zhang E, Jin H, Yu X, Wang S. Synthesis of β-amino alcohols using the tandem reduction and ring-opening reaction of nitroarenes and epoxides. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Affiliation(s)
- Jaan Pesti
- Gelest, Inc., Morrisville, Pennsylvania 19067, United States
| | | |
Collapse
|
28
|
Porwal D, Oestreich M. B(C6F5)3-Catalyzed Reduction of Aromatic and Aliphatic Nitro Groups with Hydrosilanes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Digvijay Porwal
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
29
|
Zhu K, Shaver MP, Thomas SP. Chemoselective nitro reduction and hydroamination using a single iron catalyst. Chem Sci 2016; 7:3031-3035. [PMID: 29997793 PMCID: PMC6005157 DOI: 10.1039/c5sc04471e] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/24/2016] [Indexed: 12/23/2022] Open
Abstract
An amine-bis(phenolate) iron(iii) complex catalyses both the chemoselective reduction of nitroarenes and the formal hydroamination of highly substituted olefins.
The reduction and reductive addition (formal hydroamination) of functionalised nitroarenes is reported using a simple and bench-stable iron(iii) catalyst and silane. The reduction is chemoselective for nitro groups over an array of reactive functionalities (ketone, ester, amide, nitrile, sulfonyl and aryl halide). The high activity of this earth-abundant metal catalyst also facilitates a follow-on reaction in the reductive addition of nitroarenes to alkenes, giving efficient formal hydroamination of olefins under mild conditions. Both reactions offer significant improvements in catalytic activity and chemoselectivity and the utility of these catalysts in facilitating two challenging reactions supports an important mechanistic overlap.
Collapse
Affiliation(s)
- Kailong Zhu
- School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh , EH9 3FJ , UK . ;
| | - Michael P Shaver
- School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh , EH9 3FJ , UK . ;
| | - Stephen P Thomas
- School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh , EH9 3FJ , UK . ;
| |
Collapse
|
30
|
Mamillapalli NC, Sekar G. Chemoselective Reductive Deoxygenation and Reduction of α-Keto Amides by using a Palladium Catalyst. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Pedrajas E, Sorribes I, Junge K, Beller M, Llusar R. A Mild and Chemoselective Reduction of Nitro and Azo Compounds Catalyzed by a Well-Defined Mo3S4Cluster Bearing Diamine Ligands. ChemCatChem 2015. [DOI: 10.1002/cctc.201500311] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Guyon C, Duclos MC, Sutter M, Métay E, Lemaire M. Reductive alkylation of active methylene compounds with carbonyl derivatives, calcium hydride and a heterogeneous catalyst. Org Biomol Chem 2015; 13:7067-75. [PMID: 26053131 DOI: 10.1039/c5ob00849b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot two-step reaction (Knoevenagel condensation - reduction of the double bond) has been developed using calcium hydride as a reductant in the presence of a supported noble metal catalyst. The reaction between carbonyl compounds and active methylene compounds such as methylcyanoacetate, 1,3-dimethylbarbituric acid, dimedone and the more challenging dimethylmalonate, affords the corresponding monoalkylated products in moderate to good yields (up to 83%) with minimal reduction of the starting carbonyl compounds.
Collapse
Affiliation(s)
- Carole Guyon
- Equipe Catalyse Synthèse Environnement, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard-Lyon 1, Bâtiment Curien, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France.
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
34
|
Abstract
Recent advancement in reduction methods of nitroarenes are reviewed. The different methods are classified based on the source of hydrogen utilized during reduction and the mechanism involved in the reduction process.
Collapse
|
35
|
Beyki MH, Shemirani F. Dual application of facilely synthesized Fe3O4 nanoparticles: fast reduction of nitro compound and preparation of magnetic polyphenylthiourea nanocomposite for efficient adsorption of lead ions. RSC Adv 2015. [DOI: 10.1039/c4ra12549e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapidly synthesized Fe3O4 was applied for the very fast reduction of a nitro compound and for the preparation of a polymer nanocomposite for lead adsorption.
Collapse
Affiliation(s)
| | - Farzaneh Shemirani
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
36
|
|
37
|
Rohilla S, Pant P, Jain N. Pd/mannose promoted tandem cross coupling-nitro reduction: expedient synthesis of aminobiphenyls and aminostilbenes. RSC Adv 2015. [DOI: 10.1039/c5ra04129e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
d-Mannose as a ligand for Pd catalyzed cross-coupling, and as a hydrogen source for nitro reduction in a modular one-pot cross coupling-nitro reduction sequence.
Collapse
Affiliation(s)
- Sandeep Rohilla
- Department of Chemistry
- Indian Institute of Technology
- Delhi-110016
- India
| | - Pradeep Pant
- Department of Chemistry
- Indian Institute of Technology
- Delhi-110016
- India
| | - Nidhi Jain
- Department of Chemistry
- Indian Institute of Technology
- Delhi-110016
- India
| |
Collapse
|
38
|
Sun S, Quan Z, Wang X. Selective reduction of nitro-compounds to primary amines by nickel-catalyzed hydrosilylative reduction. RSC Adv 2015. [DOI: 10.1039/c5ra17731f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tolerances of many functional groups, e.g. aryl-chloride, aryl-bromide, alkene, alkynyl, ester, ether, oxhydryl, carboxylic acid, cyano group, nitrine, carbonyl, acyl, thioether and some heterocycles, were studied with unprecedentedly high chemoselectivity.
Collapse
Affiliation(s)
- Shuai Sun
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- China. Gansu Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Zhengjun Quan
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- China. Gansu Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xicun Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- China. Gansu Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
39
|
Guyon C, Métay E, Popowycz F, Lemaire M. Synthetic applications of hypophosphite derivatives in reduction. Org Biomol Chem 2015; 13:7879-906. [DOI: 10.1039/c5ob01032b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The purpose of this review is to collect the applications in fine synthesis of hypophosphite derivatives as reducing agents.
Collapse
Affiliation(s)
- Carole Guyon
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| | - Estelle Métay
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| | - Florence Popowycz
- Equipe Chimie Organique et Bioorganique
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Institut National des Sciences Appliquées (INSA Lyon)
- F-69621 Villeurbanne Cedex
| | - Marc Lemaire
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| |
Collapse
|
40
|
Guyon C, Da Silva E, Lafon R, Métay E, Lemaire M. Reductive amination using a combination of CaH2 and noble metal. RSC Adv 2015. [DOI: 10.1039/c4ra14808h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amines were prepared by a reductive amination reaction in the presence of calcium hydride and Pt/C.
Collapse
Affiliation(s)
- Carole Guyon
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| | - Eric Da Silva
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| | - Romain Lafon
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| | - Estelle Métay
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| | - Marc Lemaire
- Equipe Catalyse Synthèse Environnement
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- UMR-CNRS 5246
- Université de Lyon
- Université Claude Bernard-Lyon 1
| |
Collapse
|
41
|
Iron and Palladium(II) Phthalocyanines as Recyclable Catalysts for Reduction of Nitroarenes. Catal Letters 2014. [DOI: 10.1007/s10562-014-1269-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Göksu H, Ho SF, Metin Ö, Korkmaz K, Mendoza Garcia A, Gültekin MS, Sun S. Tandem Dehydrogenation of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds Catalyzed by Graphene-Supported NiPd Alloy Nanoparticles. ACS Catal 2014. [DOI: 10.1021/cs500167k] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haydar Göksu
- Department
of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
- Kaynasli
Vocational College, Düzce University, Düzce 81900, Turkey
| | - Sally Fae Ho
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Önder Metin
- Department
of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Katip Korkmaz
- Department
of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Adriana Mendoza Garcia
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | - Shouheng Sun
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
43
|
Solid supported rhodium(0) nanoparticles: an efficient catalyst for chemo- and regio-selective transfer hydrogenation of nitroarenes to anilines under microwave irradiation. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Ficker M, Petersen JF, Hansen JS, Christensen JB. Hydrogenation of Aromatic Nitro Compounds with an Inexpensive and Efficient CuSO4/CoCl2Catalyst Preparedin situusing NaBH4as the Hydrogen Source. ORG PREP PROCED INT 2014. [DOI: 10.1080/00304948.2014.884374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Ganji S, Enumula SS, Marella RK, Rao KSR, Burri DR. RhNPs/SBA-NH2: a high-performance catalyst for aqueous phase reduction of nitroarenes to aminoarenes at room temperature. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00143e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A RhNPs/SBA-NH2 catalyst with <3 nm sized nanoparticles has been synthesized and used in the chemoselective hydrogenation of nitroarenes at room temperature in aqueous medium with N2H4·H2O with high TOF.
Collapse
Affiliation(s)
- Saidulu Ganji
- Catalysis Laboratory
- Indian Institute of Chemical Technology
- Hyderabad 500607, India
| | - Siva Sankar Enumula
- Catalysis Laboratory
- Indian Institute of Chemical Technology
- Hyderabad 500607, India
| | - Ravi Kumar Marella
- Catalysis Laboratory
- Indian Institute of Chemical Technology
- Hyderabad 500607, India
| | | | - David Raju Burri
- Catalysis Laboratory
- Indian Institute of Chemical Technology
- Hyderabad 500607, India
| |
Collapse
|
46
|
|
47
|
|
48
|
Guyon C, Métay E, Duguet N, Lemaire M. Biphasic Glycerol/2-MeTHF, Ruthenium-Catalysed Enantioselective Transfer Hydrogenation of Ketones Using Sodium Hypophosphite as Hydrogen Donor. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Da Silva É, Dayoub W, Duguet N, Métay E, Popowycz F, Lemaire M. New research areas inspired by sustainable development. CR CHIM 2013. [DOI: 10.1016/j.crci.2012.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Facile Reduction of Nitroarenes into Anilines and Nitroalkanes into Hydroxylaminesviathe Rapid Activation of Ammonia⋅ Borane Complex by Supported Gold Nanoparticles. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200983] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|