1
|
Qian BC, Wang X, Wang Q, Zhu XQ, Shen GB. Thermodynamic evaluations of the acceptorless dehydrogenation and hydrogenation of pre-aromatic and aromatic N-heterocycles in acetonitrile. RSC Adv 2024; 14:222-232. [PMID: 38173608 PMCID: PMC10758765 DOI: 10.1039/d3ra08022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
N-heterocycles are important chemical hydrogen-storage materials, and the acceptorless dehydrogenation and hydrogenation of N-heterocycles as organic hydrogen carriers have been widely studied, with the main focus on the catalyst synthesis and design, investigation of the redox mechanisms, and extension of substrate scope. In this work, the Gibbs free energies of the dehydrogenation of pre-aromatic N-heterocycles (YH2) and the hydrogenation of aromatic N-heterocycles (Y), i.e., ΔGH2R(YH2) and ΔGH2A(Y), were derived by constructing thermodynamic cycles using Hess' law. The thermodynamic abilities for the acceptorless dehydrogenation and hydrogenation of 78 pre-aromatic N-heterocycles (YH2) and related 78 aromatic N-heterocycles (Y) were well evaluated and discussed in acetonitrile. Moreover, the applications of the two thermodynamic parameters in identifying pre-aromatic N-heterocycles possessing reversible dehydrogenation and hydrogenation properties and the selection of the pre-aromatic N-heterocyclic hydrogen reductants in catalytic hydrogenation were considered and are discussed in detail. Undoubtedly, this work focuses on two new thermodynamic parameters of pre-aromatic and aromatic N-heterocycles, namely ΔGH2R(YH2) and ΔGH2A(Y), which are important supplements to our previous work to offer precise insights into the chemical hydrogen storage and hydrogenation reactions of pre-aromatic and aromatic N-heterocycles.
Collapse
Affiliation(s)
- Bao-Chen Qian
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Qi Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University Tianjin 300071 China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| |
Collapse
|
2
|
Shen GB, Qian BC, Luo GZ, Fu YH, Zhu XQ. Thermodynamic Evaluations of Amines as Hydrides or Two Hydrogen Ions Reductants and Imines as Protons or Two Hydrogen Ions Acceptors, as Well as Their Application in Hydrogenation Reactions. ACS OMEGA 2023; 8:31984-31997. [PMID: 37692224 PMCID: PMC10483529 DOI: 10.1021/acsomega.3c03804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Since the hydrogenation of imines (X) and the dehydrogenation of amines (XH2) generally involve the two hydrogen ions (H- + H+) transfer, the thermodynamic abilities of various amines releasing hydrides or two hydrogen ions as well as various imines accepting protons or two hydrogen ions are important and characteristic physical parameters. In this work, the pKa values of 84 protonated imines (XH+) in acetonitrile were predicted. Combining Gibbs free energy changes of amines releasing hydrides in acetonitrile from our previous work with the pKa(XH+) values, the Gibbs free energy changes of amines releasing two hydrogen ions and imines accepting two hydrogen ions were derived using Hess's law by constructing thermochemical cycles, and the thermodynamic evaluations of amines as hydrides or two hydrogen ions reductants and imines as protons or two hydrogen ions acceptors are well compared and discussed. Eventually, the practical application of thermodynamic data for amines and imines on hydrogenation feasibility, mechanism, and possible elementary steps was shown and discussed in this paper from the point of thermodynamics.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Ze Luo
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The
State Key Laboratory of Elemento-Organic Chemistry, Department of
Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Discovering and Evaluating the Reducing Abilities of Polar Alkanes and Related Family Members as Organic Reductants Using Thermodynamics. J Org Chem 2022; 87:9357-9374. [PMID: 35786938 DOI: 10.1021/acs.joc.2c01149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the pKa values of 69 polar alkanes (YH2) in acetonitrile were computed using the method developed by Luo and Zhang in 2020, and representative 69 thermodynamic network cards on 22 elementary steps of YH2 and related polar alkenes (Y) releasing or accepting H2 were naturally established. Potential electron reductants (YH-), hydride reductants (YH-), antioxidants (YH2 and YH-), and hydrogen molecule reductants (YH2) are unexpectedly discovered according to thermodynamic network cards. It is also found that there are great differences between YH2 and common hydrogen molecule reductants (XH2), such as Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydro-phenanthridine (PH2), releasing two hydrogen ions to unsaturated compounds. During the hydrogenation process, XH2 release hydrides first, then the oxidation state XH+ release protons. However, in the case of YH2, YH2 release protons first, then YH- release hydrides. It is the differences on acidic properties of YH2 and XH2 that result in the behavioral and thermodynamic differences on YH2 and XH2 releasing two hydrogen ions (H--H+). The redox mechanisms and behaviors of Y, YH-, and YH2 as electron, hydrogen atom, hydride, and hydrogen molecule donors or acceptors in the chemical reaction are reasonably investigated and discussed in this paper using thermodynamics.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Thermodynamics of the elementary steps of organic hydride chemistry determined in acetonitrile and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo01310j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the thermodynamics of the elementary step of 421 organic hydrides and unsaturated compounds releasing or accepting hydride or hydrogen determined in acetonitrile as well as their potential applications.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
5
|
Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. J Org Chem 2021; 86:2556-2569. [PMID: 33492136 DOI: 10.1021/acs.joc.0c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Desulfonylation reactions of α-sulfonylketones promoted by photoinduced electron transfer with 2-hydroxyarylbenzimidazolines (BIH-ArOH) were investigated. Under aerobic conditions, photoexcited 2-hydroxynaphthylbenzimidazoline (BIH-NapOH) promotes competitive reduction (forming alkylketones) and oxidation (producing α-hydroxyketones) of sulfonylketones through pathways involving the intermediacy of α-ketoalkyl radicals. The results of an examination of the effects of solvents, radical trapping reagents, substituents of sulfonylketones, and a variety of hydroxyaryl- and aryl-benzimidazolines (BIH-ArOH and BIH-Ar) suggest that the oxidation products are produced by dissociation of α-ketoalkyl radicals from the initially formed solvent-caged radical ion pairs followed by reaction with molecular oxygen. In addition, the observations indicate that the reduction products are generated by proton or hydrogen atom transfer in solvent-caged radical ion pairs derived from benzimidazolines and sulfonylketones. The results also suggest that arylsulfinate anions arising by carbon-sulfur bond cleavage of sulfonylketone radical anions act as reductants in the oxidation pathway to convert initially formed α-hydroperoxyketones to α-hydroxyketones. Finally, density functional theory calculations were performed to explore the structures and properties of radical ions of sulfonylketones as well as BIH-NapOH.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shyota Nakamura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
6
|
Hasegawa E, Yoshioka N, Tanaka T, Nakaminato T, Oomori K, Ikoma T, Iwamoto H, Wakamatsu K. Sterically Regulated α-Oxygenation of α-Bromocarbonyl Compounds Promoted Using 2-Aryl-1,3-dimethylbenzimidazolines and Air. ACS OMEGA 2020; 5:7651-7665. [PMID: 32280909 PMCID: PMC7144160 DOI: 10.1021/acsomega.0c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 05/08/2023]
Abstract
A debrominative oxygenation protocol has been developed for the conversion of α-bromo-α,α-dialkyl-substituted carbonyl compounds to their corresponding α-hydroxy analogues. For example, stirring a solution of α-bromoisobutyrophenone and 2-aryl-1,3-dimethylbenzimidazoline (BIH-Ar) at room temperature under an air atmosphere leads to the efficient formation of α-hydroperoxyisobutyrophenone, which can be converted to α-hydroxyisobutyrophenone using Me2S reduction. In contrast, reaction of α-bromoacetophenone under the same conditions produces the α-hydrogenated product acetophenone. α-Keto-alkyl and benzimidazolyl radicals (BI•-Ar), generated via dissociative electron transfer from BIH-Ar to α-bromoketone substrates, serve as key intermediates in the oxidation and reduction processes. The dramatic switch from hydrogenation to oxygenation is attributed to a steric effect of α-alkyl substituents, which causes hydrogen atom abstraction from sterically crowded BIH-Ar to α-keto-alkyl radicals to be slow and enable preferential reaction with molecular oxygen. Generation of the α-keto-alkyl radical and BI•-Ar intermediates in these process and their sterically governed hydrogen atom transfer reactions are supported by results arising from DFT calculations. Moreover, an electron spin resonance study showed that visible light irradiation of phenyl benzimidazoline (BIH-Ph) in the presence of molecular oxygen produces the benzimidazolyl radical (BI•-Ph). The addition of thiophenol into the reaction of α-bromoisobutyrophenone and BIH-Ph predominantly produced α-phenylthiolated isobutyrophenone even if a high concentration of molecular oxygen exists. Furthermore, the developed protocol was applied to other α-bromo-α,α-dialkylated carbonyl compounds.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- E-mail:
| | - Naoki Yoshioka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Taisei Nakaminato
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department
of Chemistry, Faculty of Science, Okayama
University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
7
|
Kavukcu SB, Günnaz S, Şahin O, Türkmen H. Piano‐stool Ru (II) arene complexes that contain ethylenediamine and application in alpha‐alkylation reaction of ketones with alcohols. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Salih Günnaz
- Department of ChemistryEge University 35100 Bornova Izmir Turkey
| | - Onur Şahin
- Scientific and Technological Research Application and Research CenterUniversity of Sinop 57000 Sinop Turkey
| | - Hayati Türkmen
- Department of ChemistryEge University 35100 Bornova Izmir Turkey
| |
Collapse
|
8
|
Meng C, Xu J, Tang Y, Ai Y, Li F. The α-alkylation of ketones with alcohols in pure water catalyzed by a water-soluble Cp*Ir complex bearing a functional ligand. NEW J CHEM 2019. [DOI: 10.1039/c9nj03345a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble dinuclear Cp*Ir complex bearing 4,4′,6,6′-tetrahydroxy-2,2′-bipyrimidine as a bridging ligand was found to be a highly effective catalyst for the α-alkylation of ketones with alcohols in water.
Collapse
Affiliation(s)
- Chong Meng
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Jing Xu
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Yawen Tang
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Yao Ai
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Feng Li
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
- State Key Laboratory of Fine Chemicals
| |
Collapse
|
9
|
Hasegawa E, Nagakura Y, Izumiya N, Matsumoto K, Tanaka T, Miura T, Ikoma T, Iwamoto H, Wakamatsu K. Visible Light and Hydroxynaphthylbenzimidazoline Promoted Transition-Metal-Catalyst-Free Desulfonylation of N-Sulfonylamides and N-Sulfonylamines. J Org Chem 2018; 83:10813-10825. [DOI: 10.1021/acs.joc.8b01536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuto Nagakura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Keisuke Matsumoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- Center for Coordination of Research Facilities, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
10
|
Hasegawa E, Izumiya N, Miura T, Ikoma T, Iwamoto H, Takizawa SY, Murata S. Benzimidazolium Naphthoxide Betaine Is a Visible Light Promoted Organic Photoredox Catalyst. J Org Chem 2018. [PMID: 29537851 DOI: 10.1021/acs.joc.8b00282] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzimidazolium naphthoxide (-ONap-BI+) was first synthesized and utilized as an unprecedented betaine photoredox catalyst. Photoexcited state of -ONap-BI+ generated by visible light irradiation catalyzes the reductive deiodination as well as desulfonylation reactions in which 1,3-dimethyl-2-phenylbenzimidazoline (Ph-BIH) cooperates with as an electron and hydrogen atom donor. Significant solvent effects on the reaction progress were discovered, and specific solvation toward imidazolium and naphthoxide moieties of -ONap-BI+ was proposed.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan.,Center for Coordination of Research Facilities , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| |
Collapse
|
11
|
Genç S, Günnaz S, Çetinkaya B, Gülcemal S, Gülcemal D. Iridium(I)-Catalyzed Alkylation Reactions To Form α-Alkylated Ketones. J Org Chem 2018; 83:2875-2881. [DOI: 10.1021/acs.joc.8b00043] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sertaç Genç
- Chemistry Department, Ege University, Bornova, 35100 Izmir, Turkey
| | - Salih Günnaz
- Chemistry Department, Ege University, Bornova, 35100 Izmir, Turkey
| | - Bekir Çetinkaya
- Chemistry Department, Ege University, Bornova, 35100 Izmir, Turkey
| | | | - Derya Gülcemal
- Chemistry Department, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
12
|
Liu P, Liang R, Lu L, Yu Z, Li F. Use of a Cyclometalated Iridium(III) Complex Containing a N∧C∧N-Coordinating Terdentate Ligand as a Catalyst for the α-Alkylation of Ketones and N-Alkylation of Amines with Alcohols. J Org Chem 2017; 82:1943-1950. [DOI: 10.1021/acs.joc.6b02758] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pengcheng Liu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| | - Ran Liang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| | - Lei Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| | - Zhentao Yu
- Jiangsu
Key Laboratory for Nano Technology, College of Engineering and Applied
Science, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| |
Collapse
|
13
|
Visible light-promoted reductive transformations of various organic substances by using hydroxyaryl-substituted benzimidazolines and bases. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wang R, Ma J, Li F. Synthesis of a-Alkylated Ketones via Tandem Acceptorless Dehydrogenation/a-Alkylation from Secondary and Primary Alcohols Catalyzed by Metal–Ligand Bifunctional Iridium Complex [Cp*Ir(2,2′-bpyO)(H2O)]. J Org Chem 2015; 80:10769-76. [DOI: 10.1021/acs.joc.5b01975] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rongzhou Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| | - Juan Ma
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
15
|
Aryl-substituted dimethylbenzimidazolines as effective reductants of photoinduced electron transfer reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Ferreira IM, Meira EB, Rosset IG, Porto AL. Chemoselective biohydrogenation of α,β- and α,β,γ,δ-unsaturated ketones by the marine-derived fungus Penicillium citrinum CBMAI 1186 in a biphasic system. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Hasegawa E, Arai S, Tayama E, Iwamoto H. Metal-free, one-pot, sequential protocol for transforming α,β-epoxy ketones to β-hydroxy ketones and α-methylene ketones. J Org Chem 2015; 80:1593-600. [PMID: 25562397 DOI: 10.1021/jo5025249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new sequential, one-pot protocol for transforming 1,3-disubstituted 2,3-epoxy ketones to β-hydroxy ketones and α-methylene ketones has been developed. Reaction of epoxy ketones with boron trifluoride etherate (BF3·OEt2) generates the cationic intermediates by regioselective epoxide ring opening and an acyl shift. Then, a treatment of these cations with 2-aryl-1,3-dimethylbenzimidazolines (DMBIH) results in formation of 1,2-disubstituted 3-hydroxy ketones. DMBIH serves as a hydride donor in the second step of this process. Finally, the β-hydroxy ketones can be converted to 1,2-disubstituted 2-methylene ketones by treatment with methanesulfonic acid or a combination of methanesulfonyl chloride and triethylamine. Importantly, the sequential steps involved in formation of the α-methylene ketone products can be carried out in one pot.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University , Ikarashi-2 8050, Niigata 950-2181, Japan
| | | | | | | |
Collapse
|
18
|
Girish YR, Raghavendra KR, Nagaraja D, Kumar KSS, Shashikanth S. Transition Metal Free Chemoselective Reduction ofα,β-Unsaturated Ketones to Saturated Ketones Using Tosyl Hydrazide as a Hydrogen Donor. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Castro-Osma JA, Comerford JW, Heath S, Jones O, Morcillo M, North M. Quinine catalysed asymmetric Michael additions in a sustainable solvent. RSC Adv 2015. [DOI: 10.1039/c4ra12132e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diethyl carbonate is shown to be a suitable, sustainable solvent in which to carry out quinine catalysed asymmetric Michael additions of malononitriles to enones.
Collapse
Affiliation(s)
- José A. Castro-Osma
- Green Chemistry Centre of Excellence
- Department of Chemistry
- The University of York
- York
- UK
| | - James W. Comerford
- Green Chemistry Centre of Excellence
- Department of Chemistry
- The University of York
- York
- UK
| | - Samantha Heath
- Green Chemistry Centre of Excellence
- Department of Chemistry
- The University of York
- York
- UK
| | - Oliver Jones
- Green Chemistry Centre of Excellence
- Department of Chemistry
- The University of York
- York
- UK
| | - Maria Morcillo
- School of Chemistry
- Newcastle University
- Newcastle-Upon-Tyne
- UK
| | - Michael North
- Green Chemistry Centre of Excellence
- Department of Chemistry
- The University of York
- York
- UK
| |
Collapse
|
20
|
Li F, Ma J, Wang N. α-Alkylation of Ketones with Primary Alcohols Catalyzed by a Cp*Ir Complex Bearing a Functional Bipyridonate Ligand. J Org Chem 2014; 79:10447-55. [DOI: 10.1021/jo502051d] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Li
- Key Laboratory
for Soft Chemistry
and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Juan Ma
- Key Laboratory
for Soft Chemistry
and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Nana Wang
- Key Laboratory
for Soft Chemistry
and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| |
Collapse
|
21
|
Ma J, Wang N, Li F. One-Pot Sequential Catalytic Hydration of Alkynes and α-Alkylation with Alcohols for the Synthesis of α-Alkylated Ketones. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Igarashi T, Tayama E, Iwamoto H, Hasegawa E. Carbon–carbon bond formation via benzoyl umpolung attained by photoinduced electron-transfer with benzimidazolines. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Stompor M, Potaniec B, Szumny A, Zieliński P, Żołnierczyk AK, Anioł M. Microbial synthesis of dihydrochalcones using Rhodococcus and Gordonia species. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Biomimetic hydrogenation: a reusable NADH co-enzyme model for hydrogenation of α,β-epoxy ketones and 1,2-diketones. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Khan IA, Balaramnavar VM, Saxena AK. Identification and optimization of novel pyrimido-isoxazolidine and oxazine as selective hydride donors. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|