1
|
Regio- and Stereoselective Synthesis of (Z,Z)-Bis(3-amino-3-oxo-1-propenyl) Selenides and Diselenides Based on 2-propynamides: A Novel Family of Diselenides with High Glutathione Peroxidase-like Activity. INORGANICS 2022. [DOI: 10.3390/inorganics10060074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The efficient regio- and stereoselective syntheses of (Z,Z)-bis(3-amino-3-oxo-1-propenyl) selenides and diselenides in high yields based on the nucleophilic addition of sodium selenide to 2-propynamides and sodium diselenide to 3-(trimethylsilyl)-2-propynamides have been developed. The first examples of the addition of a selenium-centered nucleophile to 2-propynamides with a terminal triple bond and diselenide anion to 3-(trimethylsilyl)-2-propynamides have been carried out. Bis(3-amino-3-oxo-1-propenyl) diselenides are a novel family of compounds, none of which has yet been described in the literature. The glutathione peroxidase-like activity of the obtained compounds has been evaluated and products with high activity have been found. It was established that diselenides are superior to selenides with the same substituents in glutathione peroxidase-like activity. The results of the structural studying of products by single-crystal X-ray diffraction analysis and 77Se-NMR data are discussed.
Collapse
|
2
|
Mamgain R, Singh FV. Selenium-Based Fluorescence Probes for the Detection of Bioactive Molecules. ACS ORGANIC & INORGANIC AU 2022; 2:262-288. [PMID: 36855593 PMCID: PMC9954296 DOI: 10.1021/acsorginorgau.1c00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemistry of organoselenium reagents have now become an important tool of synthetic organic and medicinal chemistry. These reagents activate the olefinic double bonds and used to archive the number of organic transformations under mild reaction conditions. A number of organoselenium compounds have been identified as potent oxidants. Recently, various organoselenium species have been employed as chemical sensors for detecting toxic metals. Moreover, a number of selenium-based fluorescent probes have been developed for detecting harmful peroxides and ROS. In this review article, the synthesis of selenium-based fluorescent probes will be covered including their application in the detection of toxic metals and harmful peroxides including ROS.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry
Division, School of Advanced Sciences (SAS),
Vellore Institute of Technology-Chennai, Vandalur-Kelambakkam Road, Chennai 600127, Tamil
Nadu, India
| | - Fateh V. Singh
- Chemistry
Division, School of Advanced Sciences (SAS),
Vellore Institute of Technology-Chennai, Vandalur-Kelambakkam Road, Chennai 600127, Tamil
Nadu, India,
| |
Collapse
|
3
|
Zhang SL, Yue CR, Dong YN, Liu XN, Wang YL, Li SS. A single chain magnet based on a 1D polymeric selenite-bridged Mn( iii) complex with an N2O2 donor. NEW J CHEM 2022. [DOI: 10.1039/d2nj04040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel molecular magnetic material with the formula of {[Mn2(salen)2(C4H3SSeO2)](ClO4)}n (Complex 1) [salen = N,N′-(ethylene)bis(salicylideneiminato)] was designed, synthesized and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Shao-Liang Zhang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Cai-Ran Yue
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yi-Nuo Dong
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiao-Na Liu
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yan-Lan Wang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Shan-Shan Li
- School of Geography and Environment, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
4
|
Zhang SL, Li XC, Gu SY, Guo S, Liu ZY, Zeng SY, Li SS. Crystal structures and magnetic properties of one-dimensional compounds constructed from Mn 2(salen) 2 building blocks and organic selenite acid ligands. NEW J CHEM 2021. [DOI: 10.1039/d1nj03338g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new compounds composed of MnIII salen building blocks and organic selenite acid with ClO4− counter anions, namely [Mn2(salen)2(C6H5SeO2)](ClO4)(1) and [Mn2(salen)2(C6H4FSeO2)](ClO4)(2) [salen = N,N′-bis(salicylidene)-ethylenediamine], were synthesized through a one-pot reaction and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Shao-Liang Zhang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xin-Chao Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Shi-Yu Gu
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Shi Guo
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Zi-Yu Liu
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Su-Yuan Zeng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Shan-Shan Li
- School of Geography and Environment, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
5
|
Hamsath A, Xian M. Chemistry and Chemical Biology of Selenenyl Sulfides and Thioseleninic Acids. Antioxid Redox Signal 2020; 33:1143-1157. [PMID: 32151152 PMCID: PMC7698873 DOI: 10.1089/ars.2020.8083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Significance: Selenenyl sulfides (RSeSRs) and thioseleninic acids (RSeSHs) are the monoselenium (Se) analogs of disulfides and persulfides that contain Se-S bonds. These bonds are found in several antioxidant-regenerating enzymes as derivatives of selenocysteine, making them an important player in redox biology as it pertains to sulfur redox regulation. Recent Advances: Mechanistic studies of redox-regulating selenoenzymes such as thioredoxin reductase and glutathione peroxidase suggest crucial Se-S bonds in the active sites. Peptide models and small-molecule mimics of these active sites have been prepared to study their fundamental chemistry. These advances help pave the road to better understand the functions of the Se-S bond in the body. Critical Issues: The Se-S bond is unstable at atmospheric temperatures and pressures. Therefore, studying their properties proposes a major challenge. Currently, there are no trapping reagents specific to RSeSRs or RSeSHs, making their presence, identity, and fates in biological environments difficult to track. Future Directions: Further understanding of the fundamental chemistry/biochemistry of RSeSRs and RSeSHs is needed to understand what their intracellular targets are and to what extent they impact signaling. Besides antioxidant regeneration and peroxide radical reduction, the roles of RSeSR and RSeSHs in other systems need to be further explored.
Collapse
Affiliation(s)
- Akil Hamsath
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Yu SC, Kim IC, Ri KJ, Ri J, Kühn H. New insight into the role of glutathione reductase in glutathione peroxidase-like activity determination by coupled reductase assay: Molecular Docking Study. J Inorg Biochem 2020; 215:111276. [PMID: 33341590 DOI: 10.1016/j.jinorgbio.2020.111276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Previously we have shown that among 15 substituted salicyloyl (2-hydroxybenzoyl) 5-seleninic acids (SSAs) 4 compounds with longer side chains or a cyclohexyl group exhibit no glutathione peroxidase (GPx)-like activity in the coupled reductase assay. Experimental inhibition of glutathione reductase (GR) by the selenenylsulfide (a main intermediate in the catalytic cycle for GPx-like activity determination) of one of the inactive compounds led us to assess the interactions between 15 selenenylsulfide compounds and the active site of GR by molecular docking. Docking results showed that S and Se atoms in selenenylsulfides of the compounds with no GPx-like activity were beyond 5 Å from S atom of Cys-58 or N atom of imidazole ring of His-467 (Root Mean Square Distances for general assessment of 3 major distances were over 4.8 Å) in the active site, so that they could not be catalyzed to be reduced by GR. Furthermore, their docking scores over 89 Kcal/mol meant that the selenenylsulfides were bound too strongly to the active site to leave it, leading eventually to inhibition of GR. We also applied the molecular docking to other GPx mimics such as ebselen, cyclic seleninate esters and di(propylaminomethylphenyl) diselenides to explain the differences in their GPx-like activity depending to the assays used. Our results suggest that the reduction of a selenenylsulfide by GR plays a positive role in GPx-like activity of GPx mimics in the coupled assay and recommended the prediction of possibility and strength of GPx-like activity by molecular docking before entering experimental research.
Collapse
Affiliation(s)
- Sun-Chol Yu
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea.
| | - In-Chol Kim
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea
| | - Kum-Ju Ri
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea
| | - Jin Ri
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea
| | - Hartmut Kühn
- Institute of Biochemistry, University Medicine Berlin-Charité, Chariteplatz 1, Berlin D-10117, Germany
| |
Collapse
|
7
|
Li P, Jia Y, Zhao N, Zhang Y, Zhou P, Lou Z, Qiao Y, Zhang P, Wen S, Han K. Quantifying the Fast Dynamics of HClO in Living Cells by a Fluorescence Probe Capable of Responding to Oxidation and Reduction Events within the Time Scale of Milliseconds. Anal Chem 2020; 92:12987-12995. [DOI: 10.1021/acs.analchem.0c01703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Jia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Ningjiu Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yanan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Zhangrong Lou
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Qiao
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, P. R. China
| | - Peiyu Zhang
- Shenzhen Jingtai Technology Co., Ltd., Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District, Shenzhen 518000, China
| | - Shuhao Wen
- Shenzhen Jingtai Technology Co., Ltd., Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District, Shenzhen 518000, China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Fourmigué M, Dhaka A. Chalcogen bonding in crystalline diselenides and selenocyanates: From molecules of pharmaceutical interest to conducting materials. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213084] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Zhang SL, Li SS, Zeng SY, Shi Y, Wang DQ, Chen L. Slow magnetic relaxation in O–Se–O bridged manganese(iii) Schiff base complexes. NEW J CHEM 2020. [DOI: 10.1039/c9nj05837k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two new chain complexes consisting of a Mn(salen) building block bridged by O–Se–O units, [Mn2(salen)2(L)](ClO4) (1) and {[Mn(salen)]2(L)2}·Y (2) (salen = N,N′-bis(salicylidene)-ethylenediamine, L = 3,4,5-trifluorobenzeneseleninic acid, Y = salicylaldehyde) have been synthesized and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Shao-Liang Zhang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shan-Shan Li
- School of Environment and Planning
- Liaocheng University
- Liaocheng
- China
| | - Su-Yuan Zeng
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Yang Shi
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Da-Qi Wang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| |
Collapse
|
10
|
Yan M, Chen S, Zhang RF, Li QL, Zhang SL, Ma CL. Syntheses, structures of Mn(II), Ni(II), Cu(II) and Zn(II) coordination complexes based on 3,4,5-trifluorobenzeneseleninic acid and N-donor ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1658871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mao Yan
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Shuai Chen
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Ru-Fen Zhang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Shao-Liang Zhang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Zhang WQ, Zhang RF, Zhang QF, Zhang SL, Ru J, Li QL, Ma CL. Four novel lanthanide(III) coordination complexes based on 3,4,5-trifluorobenzeneseleninic acid. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Novel cobalt(II) metal-organic coordination polymers based on 3,4-bifluorobenzeneseleninic acid. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Novel cobalt(II) coordination complexes based on 3,4,5-trifluorobenzeneseleninic acid and different N-donor ligands. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Yao NT, Zhang RF, Zhang SL, Li QL, Ma CL. A novel octa-nuclear 32-membered zirconocene macrocycle based on the aromatic selenite. Dalton Trans 2017; 46:524-528. [PMID: 27966730 DOI: 10.1039/c6dt04061f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel macrocyclic zirconocene(iv) aromatic selenite [(CpZr)8L16]·2(Cp4Zr2(μ-O)Cl2) (complex 1) (Cp = cyclopentadienyl anion; L = 4-fluorobenzeneseleninic acid) was prepared by the reaction of bis(cyclopentadienyl)zirconium dichloride with 4-fluorobenzeneseleninic acid and characterized by elemental analysis, infrared spectroscopy, 1H, 13C NMR spectroscopy, ESI-MS, XRD and X-ray diffraction.
Collapse
Affiliation(s)
- Nian-Tao Yao
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Ru-Fen Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shao-Liang Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chun-Lin Ma
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|
16
|
Bhowmick D, Mugesh G. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org Biomol Chem 2016; 13:10262-72. [PMID: 26372527 DOI: 10.1039/c5ob01665g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.
Collapse
Affiliation(s)
- Debasish Bhowmick
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | |
Collapse
|
17
|
Press DJ, Back TG. The role of methoxy substituents in regulating the activity of selenides that serve as spirodioxyselenurane precursors and glutathione peroxidase mimetics. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of o-(hydroxymethyl)phenyl selenides containing single or multiple methoxy substituents was synthesized, and the rate at which each compound catalyzed the oxidation of benzyl thiol to its disulfide with excess hydrogen peroxide was measured. This assay provided the means for comparing the relative abilities of the selenides to mimic the antioxidant selenoenzyme glutathione peroxidase. The mechanism for catalytic activity involves oxidation of the selenides to their corresponding selenoxides with hydrogen peroxide, cyclization to spirodioxyselenuranes, followed by reduction with two equivalents of thiol to regenerate the original selenide with concomitant disulfide formation. A single p-methoxy group on each aryl moiety afforded the highest catalytic activity, while methoxy groups in the meta position had little effect compared to the unsubstituted selenide, and o-methoxy groups suppressed activity. The installation of multiple methoxy groups on each aryl moiety provided no improvement. These results can be rationalized on the basis of dominating mesomeric and steric effects of the p- and o-substituents, respectively.
Collapse
Affiliation(s)
- David J. Press
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Thomas G. Back
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
18
|
Yadav S, Manjare ST, Singh HB, Butcher RJ. Transition metal mediated formation of dicationic diselenides stabilised by N-heterocyclic carbenes: designed synthesis. Dalton Trans 2016; 45:12015-27. [DOI: 10.1039/c6dt01425a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Designed syntheses of dicationic diselenides have been developed by (i) reduction of dihaloselones (routes A and B) and (ii) by oxidation of selone adducts of metal halides (route C).
Collapse
Affiliation(s)
- Sangeeta Yadav
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Sudesh T. Manjare
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
- Department of Chemistry
| | - Harkesh B. Singh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | | |
Collapse
|
19
|
Patel S, Meenakshi M, Hodage AS, Verma A, Agrawal S, Yadav A, Kumar S. Synthesis and structural characterization of monomeric mercury(ii) selenolate complexes derived from 2-phenylbenzamide ligands. Dalton Trans 2016; 45:4030-40. [DOI: 10.1039/c5dt04356e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present work describes the synthesis and structural characterization of mercury selenolate complexes derived from 2-phenylbenzamide ligands and their isolation in monomeric form for the first time.
Collapse
Affiliation(s)
- Saket Patel
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Meenakshi Meenakshi
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Ananda S. Hodage
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Ajay Verma
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Shailendra Agrawal
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Abhimanyu Yadav
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Sangit Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| |
Collapse
|
20
|
Arisawa M, Yamada T, Tanii S, Kawada Y, Hashimoto H, Yamaguchi M. Rhodium-catalyzed P–P bond exchange reaction of diphosphine disulfides. Chem Commun (Camb) 2016; 52:13580-13583. [DOI: 10.1039/c6cc07302f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rhodium-catalyzed exchange reaction of diphosphine disulfides, a diphosphine oxide, and a diphosphine is developed. Various symmetric diphosphine disulfides containing alkyl and phenyl groups are exchanged.
Collapse
Affiliation(s)
- Mieko Arisawa
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Tomoki Yamada
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Saori Tanii
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Yuta Kawada
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Hisako Hashimoto
- Department of Chemistry
- Graduate School of Sciences
- Tohoku University
- Sendai
- Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
21
|
Bhowmick D, Mugesh G. Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01294e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glutathione peroxidase-like antioxidant activity of amine and amide-based diselenides is described.
Collapse
Affiliation(s)
- Debasish Bhowmick
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| |
Collapse
|
22
|
Nascimento V, Ferreira NL, Canto RF, Schott KL, Waczuk EP, Sancineto L, Santi C, Rocha JB, Braga AL. Synthesis and biological evaluation of new nitrogen-containing diselenides. Eur J Med Chem 2014; 87:131-9. [DOI: 10.1016/j.ejmech.2014.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 09/06/2014] [Accepted: 09/06/2014] [Indexed: 12/15/2022]
|
23
|
Press DJ, McNeil NMR, Hambrook M, Back TG. Effects of Methoxy Substituents on the Glutathione Peroxidase-like Activity of Cyclic Seleninate Esters. J Org Chem 2014; 79:9394-401. [DOI: 10.1021/jo501689h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David J. Press
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Nicole M. R. McNeil
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Miranda Hambrook
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Thomas G. Back
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|