1
|
Gratal P, Arias-Pérez MS, Gude L. 1H-imidazo[4,5-f][1,10]phenanthroline carbohydrate conjugates: synthesis, DNA interactions and cytotoxic activity. Bioorg Chem 2022; 125:105851. [DOI: 10.1016/j.bioorg.2022.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
|
2
|
Wang B, Jiang F, Ma X, Dong Z, Liu Y. Preparation of highly dispersed ZnO nanoparticles to fabricate ultraviolet-shielding poly(vinyl chloride) films. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond. Chem Rev 2019; 119:10977-11005. [DOI: 10.1021/acs.chemrev.9b00279] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Lin W, Schmidt J, Mahler M, Schindler T, Unruh T, Meyer B, Peukert W, Segets D. Influence of Tail Groups during Functionalization of ZnO Nanoparticles on Binding Enthalpies and Photoluminescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13581-13589. [PMID: 29099602 DOI: 10.1021/acs.langmuir.7b03079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the tailoring of ZnO nanoparticle (NP) surfaces by catechol derivatives (CAT) with different functionalities: tert-butyl group (tertCAT), hydrogen (pyroCAT), aromatic ring (naphCAT), ester group (esterCAT), and nitro group (nitroCAT). The influence of electron-donating/-withdrawing properties on enthalpy of ligand binding (ΔH) was resolved and subsequently linked with optical properties. First, as confirmed by ultraviolet/visible (UV/vis) and Fourier transform infrared (FT-IR) spectroscopy results, all CAT molecules chemisorbed to ZnO NPs, independent of the distinct functionality. Interestingly, the ζ-potentials of ZnO after functionalization shifted to more negative values. Then, isothermal titration calorimetry (ITC) and a mass-based method were applied to resolve the heat release during ligand binding and the adsorption isotherm, respectively. However, both heat- and mass-based approaches alone did not fully resolve the binding enthalpy of each molecule adsorbing to the ZnO surface. This is mainly due to the fact that the Langmuir model oversimplifies the underlying adsorption mechanism, at least for some of the tested CAT molecules. Therefore, a new, fitting-free approach was developed to directly access the adsorption enthalpy per molecule during functionalization by dividing the heat release measured via ITC by the amount of bound molecules determined from the adsorption isotherm. Finally, the efficiency of quenching the visible emission caused by ligand binding was investigated by photoluminescence (PL) spectroscopy, which turned out to follow the same trend as the binding enthalpy. Thus, the functionality of ligand molecules governs the binding enthalpy to the particle surface, which in turn, at least in the current case of ZnO, is an important parameter for the quenching of visible emission. We believe that establishing such correlations is an important step toward a more general way of selecting and designing ligand molecules for surface functionalization. This allows developing strategies for tailored colloidal surfaces beyond empirically driven formulation on a case by case basis.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Haberstraße 9a, 91058 Erlangen, Germany
| | - Jochen Schmidt
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Haberstraße 9a, 91058 Erlangen, Germany
| | - Michael Mahler
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstraße 4, 91058 Erlangen, Germany
| | - Torben Schindler
- Chair of Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Staudtstraße 3, 91058 Erlangen, Germany
| | - Tobias Unruh
- Chair of Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Staudtstraße 3, 91058 Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Haberstraße 9a, 91058 Erlangen, Germany
| | - Doris Segets
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Haberstraße 9a, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Thakare SS, Chakraborty G, Kothavale S, Mula S, Ray AK, Sekar N. Proton Induced Modulation of ICT and PET Processes in an Imidazo-phenanthroline Based BODIPY Fluorophores. J Fluoresc 2017; 27:2313-2322. [DOI: 10.1007/s10895-017-2173-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023]
|
6
|
Cinar ME, Ozturk T. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. Chem Rev 2015; 115:3036-140. [DOI: 10.1021/cr500271a] [Citation(s) in RCA: 409] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehmet Emin Cinar
- Department
of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Turan Ozturk
- Department
of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- Chemistry
Group, Organic Chemistry Laboratory, TUBITAK UME, P.O. Box 54, 41470 Gebze-Kocaeli, Turkey
| |
Collapse
|