1
|
Gaspar H, Figueira F, Strutyński K, Melle-Franco M, Ivanou D, Tomé JPC, Pereira CM, Pereira L, Mendes A, Viana JC, Bernardo G. Thiophene- and Carbazole-Substituted N-Methyl-Fulleropyrrolidine Acceptors in PffBT4T-2OD Based Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1267. [PMID: 32168798 PMCID: PMC7142714 DOI: 10.3390/ma13061267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
The impact of fullerene side chain functionalization with thiophene and carbazole groups on the device properties of bulk-heterojunction polymer:fullerene solar cells is discussed through a systematic investigation of material blends consisting of the conjugated polymer poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2';5',2″;5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD) as donor and C60 or C70 fulleropyrrolidines as acceptors. The photovoltaic performance clearly depended on the molecular structure of the fulleropyrrolidine substituents although no direct correlation with the surface morphology of the photoactive layer, as determined by atomic force microscopy, could be established. Although some fulleropyrrolidines possess favorable lowest unoccupied molecular orbital levels, when compared to the standard PC71BM, they originated OPV cells with inferior efficiencies than PC71BM-based reference cells. Fulleropyrrolidines based on C60 produced, in general, better devices than those based on C70, and we attribute this observation to the detrimental effect of the structural and energetic disorder that is present in the regioisomer mixtures of C70-based fullerenes, but absent in the C60-based fullerenes. These results provide new additional knowledge on the effect of the fullerene functionalization on the efficiency of organic solar cells.
Collapse
Affiliation(s)
- Hugo Gaspar
- IPC/i3N—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800–058 Guimarães, Portugal; (H.G.); (J.C.V.)
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal;
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Karol Strutyński
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Dzmitry Ivanou
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| | - João P. C. Tomé
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal;
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049–001 Lisboa, Portugal
| | - Carlos M. Pereira
- Department of Chemistry, University of Porto, Rua do Campo Alegre, s/n, 4169–007 Porto, Portugal;
| | - Luiz Pereira
- Department of Physics and i3N—Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, 3810–193 Aveiro, Portugal;
| | - Adélio Mendes
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| | - Júlio C. Viana
- IPC/i3N—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800–058 Guimarães, Portugal; (H.G.); (J.C.V.)
| | - Gabriel Bernardo
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| |
Collapse
|
2
|
Tuktarov AR, Shakirova ZR, Dzhemilev UM. One-Pot Method for the Synthesis of 2,5-Unsubstituted Pyrrolidino[3′,4′:1,9]fullerenes. Org Lett 2017; 19:3863-3866. [DOI: 10.1021/acs.orglett.7b01730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Airat R. Tuktarov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences. 141 Pr. Oktyabrya, Ufa 450075, Russia
| | - Zulfiya R. Shakirova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences. 141 Pr. Oktyabrya, Ufa 450075, Russia
| | - Usein M. Dzhemilev
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences. 141 Pr. Oktyabrya, Ufa 450075, Russia
| |
Collapse
|
3
|
Karakawa M, Nagai T. Interfacial Reaction of Fulleropyrrolidines Affecting Organic Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21338-21345. [PMID: 28574248 DOI: 10.1021/acsami.7b02155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
UNLABELLED Fulleropyrrolidine derivatives are intrinsically basic owing to the amino group within the pyrrolidine structure. It can be predicted that the basicity of fulleropyrrolidine may affect the photovoltaic devices containing an acidic layer (e.g. , PEDOT PSS). To clarify the effect of basic fulleropyrrolidine derivatives, we synthesized compounds with an N-benzyl substituent group and fabricated organic photovoltaic (OPV) cells using this N-benzyl fulleropyrrolidine. A device structure with the ITO/PEDOT:PSS/organic layer (PTB7:fulleropyrrolidine)/Ca/Al showed high series resistance, short-circuit current density (Jsc), and low fill factor (FF) values. However, OPV cells having an inverted structure, without the PEDOT:PSS layer, contributed good device performance. We were able to reproduce the high series resistance in a model experiment using aqueous ammonia vapor to treat the PEDOT:PSS layer. Our results indicated that the activity of the PEDOT:PSS layer was affected by the basicity of the fulleropyrrolidines. These results also explain why this phenomenon does not occur at the interface of OPV devices when conventional [6,6]-phenyl C61 butyric acid methyl ester is used as an acceptor material. This finding would contribute to enhancing the OPV device performances from a chemical view point of designing a new compound.
Collapse
Affiliation(s)
- Makoto Karakawa
- Institute for Frontier Science Initiative, Kanazawa University , Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takabumi Nagai
- Fundamental Technology Group, Chemical R&D Center, Daikin Industries, Ltd., 1-1 Nishi Hitotsuya, Settsu, Osaka 566-8585, Japan
| |
Collapse
|
4
|
Sathiyan G, Sivakumar E, Ganesamoorthy R, Thangamuthu R, Sakthivel P. Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2015.12.057] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Gu C, Xiao M, Bao X, Han L, Zhu D, Wang N, Wen S, Zhu W, Yang R. Design, synthesis and photovoltaic properties of two π-bridged cyclopentadithiophene-based polymers. Polym Chem 2014. [DOI: 10.1039/c4py00881b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|