1
|
Lakshman MK, Malinchak CT, Shank N, Neary MC, Stahl L. Purinyl N-directed aroylation of 6-arylpurine ribo- and 2'-deoxyribonucleosides, and mechanistic insights. Org Biomol Chem 2024; 22:6718-6726. [PMID: 38916551 DOI: 10.1039/d4ob00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The purinyl ring contains four embedded nitrogen atoms of varying basicities. Selective utilization of these ring nitrogen atoms can lead to relatively facile remote functionalization, yielding modified purinyl motifs that are otherwise not easily obtained. Herein, we report previously undescribed N-directed aroylation of 6-arylpurine ribo and the more labile 2'-deoxyribonucleosides. Kinetic isotope analysis as well as reaction with a well-defined dimeric, palladated 9-benzyl 6-arylpurine provided evidence for N-directed cyclometallation as a key step, with a plausible rate-limiting C-H bond cleavage. Radical inhibition experiments indicate the likely intermediacy of aroyl radicals. The chemistry surmounts difficulties often posed in the functionalization of polynitrogenated and polyoxygenated nucleosidic structures that possess complex reactivities and a labile glycosidic bond that is more sensitive in the 2'-deoxy substrates.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Casina T Malinchak
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Nathaniel Shank
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, GA 31419, USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
| | - Lothar Stahl
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA
| |
Collapse
|
2
|
Mondal K, Ghosh S, Hajra A. Transition-metal-catalyzed ortho C-H functionalization of 2-arylquinoxalines. Org Biomol Chem 2022; 20:7361-7376. [PMID: 36107011 DOI: 10.1039/d2ob01119k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, direct C-H bond activation and functionalization has become a prodigious and hot topic among synthetic organic chemists due to its step-economic nature and substantial synthetic versatility. On the other hand, quinoxaline, a fused bicycle of benzene and pyrazine, has omnipresent applications in medicinal-, industrial- and materials chemistry. The presence of the N-1 atom in 2-arylquinoxaline enables chelation formation with a metal catalyst leading to the formation of ortho-substituted products. In this review, all articles related to the ortho C-H bond functionalization of 2-arylquinoxalines published up to May 2022 are highlighted.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
3
|
Joshi A, Iqbal Z, Jat JL, De SR. Pd(II)‐Catalyzed Chelation‐Induced C(sp
2
)‐H Acylation of (Hetero)Arenes Using Toluenes as Aroyl Surrogate. ChemistrySelect 2021. [DOI: 10.1002/slct.202103003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Asha Joshi
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Zafar Iqbal
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow 226025 India
| | - Saroj R. De
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
4
|
Dahiya A, Patel BK. The Rich Legacy and Bright Future of Transition-Metal Catalyzed Peroxide Based Radical Reactions. CHEM REC 2021; 21:3589-3612. [PMID: 34137502 DOI: 10.1002/tcr.202100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 01/19/2023]
Abstract
This personal account is mainly focused on the author's involvement in the field of transition metal-catalyzed peroxide based radical reactions. Over the past decades, radical chemistry has flourished and become crucial in contemporary synthetic organic chemistry. Owing to the presence of a single electron in one orbital, radicals are very unstable and react very fast. To carry out desired transformations and to control the side reactions the stabilizations of these radicals is essential. Fortunately, the implementation of a suitable transition metal and peroxide combination into the radical reactions have proved beneficial. Transition metals not only stabilizes the radicals but also protects them from being quenched by undesired homo-coupling or fragmentation. Transition metal-catalyzed radical-radical reactions provide an innovative way for the construction and derivatization of carbocycles and heterocycles. The objective of this review is to give an overview of the construction and derivatization of heterocycles through the lens of radical chemistry, mainly focusing on research work done by our group.
Collapse
Affiliation(s)
- Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, India
| |
Collapse
|
5
|
Kumar P, Dutta S, Kumar S, Bahadur V, Van der Eycken EV, Vimaleswaran KS, Parmar VS, Singh BK. Aldehydes: magnificent acyl equivalents for direct acylation. Org Biomol Chem 2020; 18:7987-8033. [PMID: 33000845 DOI: 10.1039/d0ob01458c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
From the viewpoint of meeting the current green chemistry challenges in chemical synthesis, there is a need to disseminate how the cocktail of acylation and activation can play a pivotal role in affording bioactive acylated products comprising substituted ketone motifs in fewer reaction steps, with higher atom-economy and improved selectivity. In recent years, a significant number of articles employing the title compounds "aldehydes" as magnificent acylation surrogates which are less toxic and widely applicable have been published. This review sheds light on the compounds use for selective acylation of arene, heteroarene and alkyl (sp3, sp2 and sp) C-H bonds by proficient utilization of the C-H activation strategy. Critical insights into selective acylation of diverse moieties for the synthesis of bioactive compounds are presented in this review that will enable academic and industrial researchers to understand the mechanistic aspects involved and fruitfully employ these strategies in designing novel molecules.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, SRM University Delhi-NCR, Sonepat, Haryana 131029, India. and Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Sriparna Dutta
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Sandeep Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Vijay Bahadur
- Department of Chemistry, SRM University Delhi-NCR, Sonepat, Haryana 131029, India. and Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium and Peoples' Friendship University of Russia, (RUDN University) Miklukho-Maklaya, street 6, Moscow, 117198, Russia
| | | | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | | |
Collapse
|
6
|
Bosque I, Chinchilla R, Gonzalez-Gomez JC, Guijarro D, Alonso F. Cross-dehydrogenative coupling involving benzylic and allylic C–H bonds. Org Chem Front 2020. [DOI: 10.1039/d0qo00587h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzylic and allylic C–H bonds are coupled with C(sp)–H, C(sp2)–H and C(sp3)–H bonds in a straightforward and high atom-economic manner.
Collapse
Affiliation(s)
- Irene Bosque
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Rafael Chinchilla
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Jose C. Gonzalez-Gomez
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - David Guijarro
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Francisco Alonso
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| |
Collapse
|
7
|
Kumar P, Gupta M, Bahadur V, Parmar VS, Singh BK. Radical-Induced, Palladium-Catalyzed C-H Activation: An Approach to Functionalize 4H
-Benzo[d
][1,3]oxazin-4-one Derivatives by Using Toluenes, Aldehydes, and Benzyl Alcohols. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Prashant Kumar
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Mohit Gupta
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Vijay Bahadur
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
- SRM University Delhi-NCR; 131 029 Sonepat Haryana India
| | - Virinder S. Parmar
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
- Department of Chemistry; Central University of Haryana; 123 031 Mahendragarh Haryana India
| | - Brajendra K. Singh
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| |
Collapse
|
8
|
|
9
|
Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Recent Advances in Radical C-H Activation/Radical Cross-Coupling. Chem Rev 2017. [PMID: 28639787 DOI: 10.1021/acs.chemrev.6b00620] [Citation(s) in RCA: 865] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research and industrial interest in radical C-H activation/radical cross-coupling chemistry has continuously grown over the past few decades. These reactions offer fascinating and unconventional approaches toward connecting molecular fragments with high atom- and step-economy that are often complementary to traditional methods. Success in this area of research was made possible through the development of photocatalysis and first-row transition metal catalysis along with the use of peroxides as radical initiators. This Review provides a brief and concise overview of the current status and latest methodologies using radicals or radical cations as key intermediates produced via radical C-H activation. This Review includes radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling of radicals with M-R groups, and coupling of radical cations with nucleophiles (Nu).
Collapse
Affiliation(s)
- Hong Yi
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University , Wuhan, Hubei 430072, China
| | - Guoting Zhang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University , Wuhan, Hubei 430072, China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University , Wuhan, Hubei 430072, China
| | - Zhiyuan Huang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University , Wuhan, Hubei 430072, China
| | - Jue Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University , Wuhan, Hubei 430072, China
| | - Atul K Singh
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University , Wuhan, Hubei 430072, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University , Wuhan, Hubei 430072, China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University , Nanchang 330022, China
| |
Collapse
|
10
|
Huang B, Ma L, Qiu G. One-pot synthesis of 2-(quinoxalin-2-yl)benzoate through NBS-mediated sequential reaction of 2-alkynylbenozate and aryl-1,2-diamine. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Pipaliya BV, Chakraborti AK. Cross-Dehydrogenative Coupling of Heterocyclic Scaffolds with Unfunctionalized Aroyl Surrogates by Palladium(II) Catalyzed C(sp2)-H Aroylation through Organocatalytic Dioxygen Activation. J Org Chem 2017; 82:3767-3780. [DOI: 10.1021/acs.joc.7b00226] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bhavin V. Pipaliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, S. A. S. Nagar, Punjab 160 062, India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
12
|
Zhao Y, Sharma UK, Schrӧder F, Sharma N, Song G, Van der Eycken EV. Direct C-2 acylation of indoles with toluene derivatives via Pd(ii)-catalyzed C–H activation. RSC Adv 2017. [DOI: 10.1039/c7ra06004a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A simple and efficient Pd-catalyzed method for the C2-acylation of indoles is described using toluene derivatives.
Collapse
Affiliation(s)
- Yaping Zhao
- Shanghai Key Laboratory of Chemical Biology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- B-3001 Leuven
- Belgium
| | - Felix Schrӧder
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- B-3001 Leuven
- Belgium
| | - Nandini Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- B-3001 Leuven
- Belgium
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- B-3001 Leuven
- Belgium
| |
Collapse
|
13
|
Santra SK, Banerjee A, Mohanta PR, Patel BK. Peroxide-Free Pd(II)-Catalyzed Ortho Aroylation and Ortho Halogenation of Directing Arenes. J Org Chem 2016; 81:6066-74. [DOI: 10.1021/acs.joc.6b01170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sourav Kumar Santra
- Department
of Chemistry, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Arghya Banerjee
- Department
of Chemistry, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | | | - Bhisma K. Patel
- Department
of Chemistry, Indian Institute of Technology, Guwahati 781 039, Assam, India
| |
Collapse
|
14
|
Xiao F, Chen S, Huang H, Deng GJ. Palladium-Catalyzed Oxidative Directortho-C-H Acylation of Arenes with Aldehydes under Aqueous Conditions. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Liu Q, Dong X, Li J, Xiao J, Dong Y, Liu H. Recent Advances on Palladium Radical Involved Reactions. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01469] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qing Liu
- School
of Chemical Engineering, Shandong University of Technology, 266 West
Xincun Road, Zibo 255049, P. R. China
| | - Xu Dong
- School
of Chemical Engineering, Shandong University of Technology, 266 West
Xincun Road, Zibo 255049, P. R. China
| | - Jun Li
- School
of Chemical Engineering, Shandong University of Technology, 266 West
Xincun Road, Zibo 255049, P. R. China
| | - Jian Xiao
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, P. R. China
| | - Yunhui Dong
- School
of Chemical Engineering, Shandong University of Technology, 266 West
Xincun Road, Zibo 255049, P. R. China
| | - Hui Liu
- School
of Chemical Engineering, Shandong University of Technology, 266 West
Xincun Road, Zibo 255049, P. R. China
| |
Collapse
|
16
|
Wu XF. Acylation of (Hetero)Arenes through CH Activation with Aroyl Surrogates. Chemistry 2015; 21:12252-65. [DOI: 10.1002/chem.201501548] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 01/02/2023]
|
17
|
Santra SK, Banerjee A, Khatun N, Samanta A, Patel BK. Palladium catalyzed ortho-halogenation of 2-arylbenzothiazole and 2,3-diarylquinoxaline. RSC Adv 2015. [DOI: 10.1039/c4ra15461d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Pd-catalysed mono and di-o-halogenation strategy has been demonstrated selectively using benzothiazoles and quinoxalines as the directing substrates.
Collapse
Affiliation(s)
| | - Arghya Banerjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Nilufa Khatun
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Asim Samanta
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Bhisma K. Patel
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
18
|
Vanjari R, Singh KN. Utilization of methylarenes as versatile building blocks in organic synthesis. Chem Soc Rev 2015; 44:8062-96. [DOI: 10.1039/c5cs00003c] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review attempts to describe the latest developments in the utilisation of methylarenes adopting C–H functionalization strategies and covers all the developments until March 2015.
Collapse
Affiliation(s)
- Rajeshwer Vanjari
- Department of Chemistry (Centre of Advanced Study)
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Krishna Nand Singh
- Department of Chemistry (Centre of Advanced Study)
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
19
|
Allu S, Swamy KCK. Palladium-catalysed ortho-acylation of 6-anilinopurines/purine nucleosides via C–H activation. RSC Adv 2015. [DOI: 10.1039/c5ra18447a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purinyl N1-directed ortho-acylation of 6-anilinopurines was achieved in the presence of [Pd]-catalyst using aldehydes/α-oxocarboxylic acids as the acylating sources.
Collapse
|
20
|
Feng JB, Wu XF. Transition metal-catalyzed oxidative transformations of methylarenes. Appl Organomet Chem 2014. [DOI: 10.1002/aoc.3244] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian-Bo Feng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou Zhejiang Province 310018 People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou Zhejiang Province 310018 People's Republic of China
- Leibniz-Institut für Katalyse eV an der Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
21
|
Santra SK, Banerjee A, Khatun N, Patel BK. Ceric Ammonium Nitrate (CAN) Promoted PdII-Catalyzed Substrate-Directedo-Benzoxylation and Decarboxylativeo-Aroylation. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403367] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Khatun N, Banerjee A, Santra SK, Behera A, Patel BK. Pd(ii)-catalysed o-aroylation of directing arenes using terminal aryl alkenes and alkynes. RSC Adv 2014. [DOI: 10.1039/c4ra11014e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|