Zhong K, Liu S, Li Y, Tang L, Sun X, Li X, Li J. A triphenylamine-based aggregation-induced emission active fluorescent probe for fluorescent ink, fingerprint powder, and visual detection of salmon freshness.
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID:
39873134 DOI:
10.1002/jsfa.14144]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND
Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.
RESULTS
The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing. It was also prepared successfully for application as a fingerprint powder, facilitating the visual detection of invisible fingerprints on surfaces such as glass, plastic, tinfoil, metal, aluminum, and resin. The probe exhibited a clear fluorescence response to 12 volatile amines via an AIE-based 'on-off' mechanism in an EtOH/H2O (4/6, v/v) solution. The TBAC/bromocresol green (BCG) indicator label also enabled non-destructive and rapid assessment of salmon freshness through dual-channel colorimetric and fluorescence responses.
CONCLUSION
The versatility of TBAC makes it a promising material for various applications, including fluorescent materials, criminal detection, and food safety. This study provides a new basis for the multifunctional application of fluorescent probes. © 2025 Society of Chemical Industry.
Collapse