1
|
Yadav AR, Katariya AP, Kanagare AB, Patil PDJ, Tagad CK, Dake SA, Nagwade PA, Deshmukh SU. Review on advancements of pyranopyrazole: synthetic routes and their medicinal applications. Mol Divers 2024:10.1007/s11030-023-10757-w. [PMID: 38236443 DOI: 10.1007/s11030-023-10757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 01/19/2024]
Abstract
Pyranopyrazoles are among the most distinguished, biologically potent, and exciting scaffolds in medicinal chemistry and drug discovery. Synthesis and design of pyranopyrazoles using functional modifications via multicomponent reactions (MCRs) are thoroughly found in synthetic protocols by forming new C-C, C-N, and C-O bonds. This review aims to focus on the biological importance of pyranopyrazoles as well as on a diverse synthetic approach for their synthesis using various catalytic systems such as acid-catalyzed, base-catalyzed, ionic liquids and green media-catalyzed, nano-particle-catalyzed, metal oxide-supported catalysts, and silica-supported catalysts. In this review, we have summarized data on the advancements in synthesizing pyranopyrazole from the last two decades to the mid-2023 and research papers describing the importance of these scaffolds. This review will be significant for synthetic organic chemists and researchers working in organic chemistry.
Collapse
Affiliation(s)
- Ashok R Yadav
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India
| | - Ashishkumar P Katariya
- Department of Chemistry, SAJVPM'S Smt. S. K. Gandhi Arts, Amolak Science & P. H. Gandhi, Commerce College, Kada, Beed, Maharashtra, 414202, India
| | - Anant B Kanagare
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| | - Pramod D Jawale Patil
- Department of Chemistry, Balbhim Arts, Science and Commerce College, Beed, Maharashtra, 431122, India
| | - Chandrakant K Tagad
- Department of Biochemistry, S.B.E.S. College of Science, Aurangabad, Maharashtra, 431001, India
| | - Satish A Dake
- Department of Chemistry, Sunderrao Solanke Mahavidyalaya, Majalgaon, Maharashtra, 431131, India
| | - Pratik A Nagwade
- Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, Maharashtra, 414102, India
| | - Satish U Deshmukh
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| |
Collapse
|
2
|
Ahmad A, Rao S, Shetty NS. Green multicomponent synthesis of pyrano[2,3- c]pyrazole derivatives: current insights and future directions. RSC Adv 2023; 13:28798-28833. [PMID: 37790089 PMCID: PMC10543893 DOI: 10.1039/d3ra05570a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The past decade has witnessed significant progress in synthesizing structurally diverse and biologically relevant pyrano[2,3-c]pyrazole derivatives through the integration of green methodologies. This review summarizes the recent advances in the green multicomponent synthesis of pyrano[2,3-c]pyrazole and spiro-pyrano[2,3-c]pyrazole derivatives. These include the application of energy-efficient techniques such as microwave and ultrasound-assisted synthesis, benign catalysts and biodegradable composites, solvent selection with a focus on water as a renewable and non-toxic medium, and solvent-free conditions. The review consolidates the current knowledge and future research directions, providing a valuable resource for researchers dedicated to advancing green chemistry practices.
Collapse
Affiliation(s)
- Afrisham Ahmad
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Sithara Rao
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Nitinkumar S Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| |
Collapse
|
3
|
Chakraborty S, Paul B, De UC, Natarajan R, Majumdar S. Water-SDS-[BMIm]Br composite system for one-pot multicomponent synthesis of pyrano[2,3- c]pyrazole derivatives and their structural assessment by NMR, X-ray, and DFT studies. RSC Adv 2023; 13:6747-6759. [PMID: 36860543 PMCID: PMC9969234 DOI: 10.1039/d3ra00137g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Here, we report a simple, efficient, and green protocol for the one-pot synthesis of pyrano[2,3-c]pyrazole derivatives via a sequential three-component strategy using aromatic aldehydes, malononitrile and pyrazolin-5-one in a water-SDS-ionic liquid system. This is a base and volatile organic solvent-free approach that could be applicable to a wide substrate scope. The key advantages of the method over other established protocols are very high yield, eco-friendly conditions, chromatography-free purification and recyclability of the reaction medium. Our study revealed that the N-substituent present in pyrazolinone controls the selectivity of the process. N-unsubstituted pyrazolinone favours the formation of 2,4-dihydro pyrano[2,3-c]pyrazoles whereas under identical conditions N-phenyl substituent pyrazolinone favours the formation 1,4-dihydro pyrano[2,3-c]pyrazoles. Structures of the synthesized products were established by NMR and X-ray diffraction techniques. Energy optimized structures and energy gaps between the HOMO-LUMO of some selected compounds were estimated using density functional theory to explain the extra stability of the 2,4-dihydro pyrano[2,3-c]pyrazoles over 1,4-dihydro pyrano[2,3-c]pyrazoles.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Bhaswati Paul
- CSIR-Indian Institute of Chemical Biology4,Raja S. C. Mullick RoadKolkata 700 032India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Ramalingam Natarajan
- CSIR-Indian Institute of Chemical Biology4,Raja S. C. Mullick RoadKolkata 700 032India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| |
Collapse
|
4
|
Badbedast M, Abdolmaleki A, Khalili D. Copper‐Decorated Magnetite Polydopamine Composite (Fe
3
O
4
@PDA): An Effective and Durable Heterogeneous Catalyst for Pyranopyrazole Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202203199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mehran Badbedast
- Department of Chemistry College of Sciences Shiraz University Shiraz 71467-13565 Iran E-mail: Cyclization and
| | - Amir Abdolmaleki
- Department of Chemistry College of Sciences Shiraz University Shiraz 71467-13565 Iran E-mail: Cyclization and
| | - Dariush Khalili
- Department of Chemistry College of Sciences Shiraz University Shiraz 71467-13565 Iran E-mail: Cyclization and
| |
Collapse
|
5
|
Ansari A, Ali A, Khan N, Saad Umar M, Owais M. Synthesis of steroidal dihydropyrazole derivatives using green ZnO NPs and evaluation of their anticancer and antioxidant activity. Steroids 2022; 188:109113. [PMID: 36152868 DOI: 10.1016/j.steroids.2022.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) were synthesized by a green method using Azadirachta indica leaf extract. The structure of the prepared ZnO (NPs) were characterized by FT-IR, XRD, SEM-EDX and TEM analyses. The biosynthesized ZnO (NPs) were then used as a catalyst for the synthesis of steroidal dihydropyrazole derivatives through a one-pot multicomponent reaction involving phenyl acetylene and hydrazine derivatives. The anticancer activity of newly synthesized compounds were evaluated against three cancer cell lines namely HeLa (human cervical carcinoma), Hep3B (human hepatocellular carcinoma) and MCF7 (human breast adenocarcinoma) by MTT assay. The tested compounds were found to be active against all cancer cell lines and less toxic towards normal peripheral blood mononuclear cells (PBMCs). Antioxidant activity have also been investigated via free radical scavenging ability using DPPH, FRAP and ABTS assay. The tested compounds were found to exhibit moderate to good antioxidant activity which increases with increase in the concentration of steroidal dihydropyrazoles. Among all the tested steroidal dihydropyrazoles, compound 17 is found to be most active.
Collapse
Affiliation(s)
- Anam Ansari
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab 140301, India; Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | - Abad Ali
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | - Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
6
|
Mohamadpour F. Synthesis of Dihydropyrano[2,3- c]pyrazoles Using Carboxymethyl Cellulose as a Recyclable Catalyst. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Han Z. Multicomponent Synthesis of Dihydropyrano[2,3-c]pyrazoles Catalyzed by Zinc-Proline Complex. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022090159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ali TE, Assiri MA. Ultrasound Assisted One-Pot Three-Component Reaction for Synthesis of Novel Functionalized 4-Thioxo-Pyrano[2,3-c]Pyrazoles, 5-Thioxo-Pyrano[2,3-d]Pyrimidines and 5-Thioxo-Pyrido[2,3-d]Pyrimidines Catalyzed by Triethylamine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Tarik E. Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Ghasemzadeh MA, Mirhosseini-Eshkevari B, Dadashi J. IRMOF-3 Functionalized GO/CuFe2O4: A New and Recyclable Catalyst for the Synthesis of Dihydropyrano[2,3-c]Pyrazoles under Ultrasound Irradiations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Patil S, Tandon R, Tandon N. Magnetically Recoverable Silica-Decorated Ferromagnetic-Nanoceria Nanocatalysts and Their Use with O- and N-Butyloxycarbonylation Reaction via Solvent-Free Condition. ACS OMEGA 2022; 7:24190-24201. [PMID: 35874196 PMCID: PMC9301736 DOI: 10.1021/acsomega.2c01107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silica-decorated ferrite nanoparticles, a new kind, coated with ceric ammonium nitrate (CAN), have been prepared successfully by simple coprecipitation techniques. Powder X-ray diffraction spectroscopy (PXRD), Fourier transform-infrared spectroscopy (FT-IR), field emission-scanning electron microscope (FE-SEM), wavelength-dispersive X-ray spectroscopy (WDX), energy-dispersive spectroscopy (EDS), inductive coupled plasma-optical emission spectroscopy (ICP-OES), and thermogravimetric analysis (TGA) techniques were used to characterize these nanoparticles. The catalysts are further studied for catalytic activity in solvent-free conditions. Importantly, these nanoparticles have been collected from the reaction mixture using an external magnet and recycled up to minimum of 15 cycles with no substantial loss of catalytic characteristics.
Collapse
|
11
|
A phenylazophenylenediamine-based La-complex as a superb nanocatalyst for the synthesis of diverse pyrano[2,3-c]pyrazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Ali TE, Assiri MA, Shati AA, Alfaifi MY, Elbehairi SEI. One-Pot Three-Component Synthesis of a Series of 2-Amino-4-(4-oxo-4H-chromen-3-yl)-5-(2,2,2-trifluoroacetyl)-6-(trifluoromethyl)-4H-pyrans and 2-Amino-4-(4-oxo-4H-chromen-3-yl)-5-(thiophene-2-carbonyl)-6-(trifluoromethyl)-4H-pyrans as Promising Anticancer Agents. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Anwer KE, El-Sattar NEAA, Shamaa MM, Zakaria MY, Beshay BY. Design, Green Synthesis and Tailoring of Vitamin E TPGS Augmented Niosomal Nano-Carrier of Pyrazolopyrimidines as Potential Anti-Liver and Breast Cancer Agents with Accentuated Oral Bioavailability. Pharmaceuticals (Basel) 2022; 15:ph15030330. [PMID: 35337128 PMCID: PMC8949375 DOI: 10.3390/ph15030330] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
VEGF plays a crucial role in cancer development, angiogenesis and progression, principally liver and breast cancer. It is vital to uncover novel chemical candidates of VEGFR inhibitors to develop more potent anti-breast and anti-liver cancer agents than the currently available candidates, sorafenib and regorafenib, that face resistance obstacles and severe side effects. Herein, nine pyrazolopyrimidine derivatives were designed, synthesized as sorafenib and regorafenib analogues and screened for their in vitro cytotoxic and growth inhibition activities against four human cancer cell lines, namely breast cancer (Michigan Cancer Foundation-7 (MCF-7), hepatocellular carcinoma (HCC) type (HepG2), lung carcinoma (A-549) and human colorectal carcinoma-116 (HCT-116)). Among the tested compounds, compounds 1, 2a, 4b and 7 showed the uppermost cytotoxic activities against all aforementioned cell lines with IC50 estimates varying from 6 to 50 µM, among which compound 7 showed the best inhibitory activity on all tested compounds. Stunningly, compound 7 showed the best significant inhibition of the VEGFR-2 protein expression level (72.3%) as compared to the control and even higher than that produced with sorafenib and regorafenib (70.4% and 55.6%, respectively). Modeling studies provided evidence for the possible interactions of the synthesized compounds with the key residues of the ATP binding sites on the hinge region and the “DFG out” motif of VEGFR-2 kinase. Collectively, our present study suggests that pyrazolopyrimidine derivatives are a novel class of anti-cancer drug candidates to inhibit VEGF-VEGFR function. Aspiring to promote constrained aqueous solubility, hence poor oral bioavailability of the developed lead molecule, 7 and 2a-charged D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) surface-coated niosomes were successfully constructed, adopting a thin film hydration technique striving to overcome these pitfalls. A 23 full factorial design was involved in order to investigate the influence of formulation variables: type of surfactant, either Span 60 or Span 40; surfactant:cholesterol ratio (8:2 or 5:5) along with the amount of TPGS (25 mg or 50 mg) on the characteristics of the nanosystem. F2 and S2 were picked as the optimum formula for compounds 2a and 7 with desirability values of 0.907 and 0.903, respectively. In addition, a distinguished improvement was observed in the compound’s oral bioavailability and cytotoxic activity after being included in the nano-TPGS-coated niosomal system relative to the unformulated compound. The nano-TPGS-coated niosomal system increased the hepatocellular inhibitory activity four times fold of compound 7a (1.6 µM) and two-fold of 2a (3 µM) relative to the unformulated compounds (6 µM and 6.2 µM, respectively).
Collapse
Affiliation(s)
- Kurls E. Anwer
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Nour E. A. Abd El-Sattar
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
- Correspondence: (N.E.A.A.E.-S.); or (M.Y.Z.); Tel.: +20-1012277219 (N.E.A.A.E.-S.); +20-1006886853 (M.Y.Z.)
| | - Marium M. Shamaa
- Clinical and Biological Sciences (Biochemistry and Molecular Biology) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt;
| | - Mohamed Y. Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Correspondence: (N.E.A.A.E.-S.); or (M.Y.Z.); Tel.: +20-1012277219 (N.E.A.A.E.-S.); +20-1006886853 (M.Y.Z.)
| | - Botros Y. Beshay
- Pharmaceutical Sciences (Pharmaceutical Chemistry) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt;
| |
Collapse
|
14
|
Ali TE, Assiri MA, Shati AA, Alfaifi MY, Elbehairi SEI. Facile Green One-Pot Synthesis and Antiproliferative Activity of Some Novel Functionalized 4-(4-Oxo-4H-chromen-3-yl)pyrano[2,3-c]pyrazoles and 5-(4-Oxo-4H-chromen-3-yl)pyrano[2,3-d]pyrimidines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022010158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abdelhamid A, Salama KSM, Elsayed AM, Gad MA, Ali Ali El-Remaily MAEA. Synthesis and Toxicological Effect of Some New Pyrrole Derivatives as Prospective Insecticidal Agents against the Cotton Leafworm, Spodoptera littoralis (Boisduval). ACS OMEGA 2022; 7:3990-4000. [PMID: 35155894 PMCID: PMC8829954 DOI: 10.1021/acsomega.1c05049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/24/2021] [Indexed: 05/13/2023]
Abstract
Herein, a series of biologically active pyrrole derivatives, namely 2-[(3-cyano-5-aryl-1H-pyrrol-2-yl)thio]acetic acids 2a-c, 2-[(2-hydroxyethyl)-thio]-5-aryl-1H-pyrrole-3-carbonitriles 3a-c, and 2-[(2-amino-ethyl)thio]-5-aryl-1H-pyrrole-3-carbonitriles 4a-c, 2,2'-disulfanediylbis(5-aryl-1H-pyrrole-3-carbonitriles) 5a-c, 2-((3-cyano-5-aryl-1H-pyrrol-2-yl)thio)acetates 6a-c, 2-[(3-cyano-5-phenyl-1H-pyrrol-2-yl)thio]acetohydrazides 7a-c, and 2-{2-[(3-cyano-5-aryl-1H-pyrrol-2-yl)thio]acetyl}-N-phenyl-hydrazinecarbothioamides 8a-c, as insecticidal agents, were synthesized via adaptable, smoothly accessible 2-(2-oxo-2-arylylethyl)malononitriles 1a-c. The structures were proved using infrared (IR), nuclear magnetic resonance (NMR), and mass spectrum (MS) techniques. Under laboratory conditions, the toxicological characteristics were tested towards Spodoptera littoralis, cotton leafworm insect type. In respect to the LC50 values, compounds 6a, 7a, 8c, and 3c possess the highest insecticidal bioefficacy, with values of 0.5707, 0.1306, 0.9442, and 5.883 ppm, respectively. The study paves the way towards discovering new materials for potential use as insecticidal active agents.
Collapse
Affiliation(s)
- Antar
A. Abdelhamid
- Department
of Chemistry, Faculty of Science, Sohag
University,82524 Sohag, Egypt
- Chemistry
Department, Faculty of Science, Albaha University, Albaha 1988, Saudi Arabia
| | - Kaoud S. M. Salama
- Department
of Chemistry, Faculty of Science, Sohag
University,82524 Sohag, Egypt
- , kaoud2013284 @science.sohag.edu.eg
| | - Ahmed M. Elsayed
- Department
of Chemistry, Faculty of Science, Sohag
University,82524 Sohag, Egypt
| | - Mohamed A. Gad
- Research
Institute of Plant Protection, Agriculture
Research Center, 12112 Giza, Egypt
| | | |
Collapse
|
16
|
Parikh PH, Timaniya JB, Patel MJ, Patel KP. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Heravi MM, Malakooti R, Kafshdarzadeh K, Amiri Z, Zadsirjan V, Atashin H. Supported palladium oxide nanoparticles in Al-SBA-15 as an efficient and reusable catalyst for the synthesis of pyranopyrazole and benzylpyrazolyl coumarin derivatives via multicomponent reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Biswas SK, Das D. One-pot Synthesis of Pyrano[2,3-c]pyrazole Derivatives via Multicomponent Reactions (MCRs) and their Applications in Medicinal Chemistry. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x19666211220141622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Many pyrano[2,3-c]pyrazole derivatives display diverse biological activities and some of them are known as anticancer, analgesic, anticonvulsant, antimicrobial, anti-inflammatory, and anti-malarial agents. In recent years, easy convergent, multicomponent reactions (MCRs) have been adopted to make highly functionalizedpyrano[2,3-c]pyrazole derivatives of biological interest. The synthesis of 1,4-dihydropyrano[2,3-c]pyrazole (1,4-DHPP, 2), 2,4-dihydropyrano[2,3-c]pyrazole (2,4-DHPP, 3), 4-hydroxypyrano[2,3-c]pyrazole (4-HPP, 4) derivatives, 1,4,4-substitied pyranopyrazole (SPP, 5) were reported via two-, three-, four- and five-component reactions (MCRs).
Methods:
This review article compiles the preparation of pyrano[2,3-c]pyrazole derivatives, and it highlights the applications of various pyrano[2,3-c]pyrazole derivatives in medicinal chemistry.
Results:
Varieties of pyrano[2,3-c]pyrazole derivatives were achieved via “One-pot” multicomponent reactions (MCRs). Different reaction conditions in the presence of a catalyst or without catalysts were adapted to prepare the pyrano[2,3-c]pyrazole derivatives.
Conclusion:
Biologically active pyrano[2,3-c]pyrazole derivatives were prepared and used in drug discovery research.
Collapse
Affiliation(s)
- Swapan Kumar Biswas
- Department of Chemistry, Sree Chaitanya College, Habra, 24-Pgs(N), West Bengal 743268, India
| | - Debasis Das
- Department Discovery Chemistry Research, Arromax Pharmatech Co. Ltd.Sangtian Island Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, China
| |
Collapse
|
19
|
Elsayed AM, El‐Remaily MAEAAA, Salama KSM, Abdelhamid AA. Utility of pyrrole‐2‐thioacetohydrazide in synthesis of new heterocyclic compounds with promising antimicrobial activities and molecular docking studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed M. Elsayed
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | | | - Kaoud S. M. Salama
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Antar A. Abdelhamid
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
- Chemistry Department, Faculty of Science Albaha University Albaha Saudi Arabia
| |
Collapse
|
20
|
Khalaj M, Taherkhani M, Samadi Kazemi M, Kalhor M, Talebian Dehkordy G. New Nanoparticles of Fe 3O 4@SiO 2 Functionalized Sulfonic Acid Magnetic Properties and Catalytic Investigation on the Multi-Component Preparation of Some Organic Compounds. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
| | - Mahboubeh Taherkhani
- Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Mehdi Kalhor
- Department of Organic Chemistry, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
21
|
Nemati R, Elhamifar D, Zarnegaryan A, Shaker M. Core‐shell structured magnetite silica‐supported hexatungstate: A novel and powerful nanocatalyst for the synthesis of biologically active pyrazole derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ramin Nemati
- Department of Chemistry Yasouj University Yasouj Iran
| | | | | | | |
Collapse
|
22
|
Ali TE, Assiri MA, Alzahrani AY, Salem MA, Shati AA, Alfaifi MY, Elbehairi SEI. An effective green one-pot synthesis of some novel 5-(thiophene-2-carbonyl)-6-(trifluoromethyl)pyrano[2,3- c]pyrazoles and 6-(thiophene-2-carbonyl)-7-(trifluoromethyl)pyrano[2,3- d]pyrimidines bearing chromone ring as anticancer agents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1966804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tarik E. Ali
- Faculty of Science, Department of Chemistry, King Khalid University, Abha, Saudi Arabia
- Faculty of Education, Department of Chemistry, Ain Shams University, Cairo, Egypt
| | - Mohammed A. Assiri
- Faculty of Science, Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Y. Alzahrani
- Faculty of Science and Arts, Department of Chemistry, King Khalid University, Mohail Assir, Saudi Arabia
| | - Mohamed A. Salem
- Faculty of Science and Arts, Department of Chemistry, King Khalid University, Mohail Assir, Saudi Arabia
- Faculty of Science, Department of Chemistry, Al-Azhar University, Nasr City, Egypt
| | - Ali A. Shati
- Faculty of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Faculty of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Faculty of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Agouza, Egypt
| |
Collapse
|
23
|
Tandon R, Tandon N, Patil SM. Overview on magnetically recyclable ferrite nanoparticles: synthesis and their applications in coupling and multicomponent reactions. RSC Adv 2021; 11:29333-29353. [PMID: 35479579 PMCID: PMC9040805 DOI: 10.1039/d1ra03874e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Nanocatalysis is an emerging area of research that has attracted much attention over the past few years. It provides the advantages of both homogeneous as well as heterogeneous catalysis in terms of activity, selectivity, efficiency and reusability. Magnetically recoverable nanocatalysts provide a larger surface area for the chemical transformations where the organic groups can be anchored and lead to decrease in the reaction time, increase in the reaction output and improve the atom economy of the chemical reactions. Moreover, magnetic nanocatalysts provide a greener approach towards the chemical transformations and are easily recoverable by the aid of an external magnet for their reusability. This review aims to give an insight into the important work done in the field of magnetically recoverable nanocatalysts and their applications in carbon-carbon and carbon-heteroatom bond formation.
Collapse
Affiliation(s)
- Runjhun Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Nitin Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Shripad M Patil
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| |
Collapse
|
24
|
Ali El-Remaily MAEAA, El-Dabea T, Alsawat M, Mahmoud MHH, Alfi AA, El-Metwaly N, Abu-Dief AM. Development of New Thiazole Complexes as Powerful Catalysts for Synthesis of Pyrazole-4-Carbonitrile Derivatives under Ultrasonic Irradiation Condition Supported by DFT Studies. ACS OMEGA 2021; 6:21071-21086. [PMID: 34423215 PMCID: PMC8375103 DOI: 10.1021/acsomega.1c02811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/23/2021] [Indexed: 05/17/2023]
Abstract
In this study, we are interested in preparing Fe(III), Pd(II), and Cu(II) complexes from new thiazole derivatives. All syntheses were elaborately elucidated to estimate their molecular and structural formulae, which agreed with those of mononuclear complexes. The square-planer geometry of Pd(II) complex (MATYPd) was the starting point for its use as a heterocatalyst in preparing pyrazole-4-carbonitrile derivatives 4a-o using ultrasonic irradiation through a facile one-pot reaction. The simple operation, short-time reaction (20 min), and high efficiency (97%) were the special advantages of this protocol. Furthermore, this green synthesis strategy was advanced by examination of the reusability of the catalyst in four consecutive cycles without significant loss of catalytic activity. The new synthesis strategy presented remarkable advantages in terms of safety, simplicity, stability, mild conditions, short reaction time, excellent yields, and use of a H2O solvent. This catalytic protocol was confirmed by the density functional theory (DFT) study, which reflected the specific characteristics of such a complex. Logical mechanisms have been suggested for the successfully exerted essential physical parameters that confirmed the superiority of the Pd(II) complex in the catalytic role. Optical band gap, electrophilicity, and electronegativity features, which are essential parameters for the catalytic behavior of the Pd(II) complex, are based mainly on the unsaturated valence shell of Pd(II).
Collapse
Affiliation(s)
| | - Tarek El-Dabea
- Department
of Chemistry, Faculty of Science, Sohag
University, 82524 Sohag, Egypt
| | - Mohammed Alsawat
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed H. H. Mahmoud
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 715, Makkah, Saudi Arabia
| | - Nashwa El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 715, Makkah, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, 35516, Mansoura, Egypt
| | - Ahmed M. Abu-Dief
- Department
of Chemistry, Faculty of Science, Sohag
University, 82524 Sohag, Egypt
- Department
of Chemistry, College of Science, Taibah
University, P.O. Box 344, 344, Madinah, Saudi Arabia
| |
Collapse
|
25
|
El‐Remaily MAEAAA, El‐Metwaly NM, Bawazeer TM, Khalifa ME, El‐Dabea T, Abu‐Dief AM. Efficient and recoverable novel pyranothiazol Pd (II), Cu (II) and Fe(III) catalysts in simple synthesis of polyfunctionalized pyrroles: Under mild conditions using ultrasonic irradiation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Nashwa M. El‐Metwaly
- Chemistry Department, Faculty of Applied Science Umm Al‐Qura University Mecca Saudi Arabia
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Tahani M. Bawazeer
- Chemistry Department, Faculty of Applied Science Umm Al‐Qura University Mecca Saudi Arabia
| | - Mohamed E. Khalifa
- Department of Chemistry, College of Science Taif University Taif Saudi Arabia
| | - Tarek El‐Dabea
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| | - Ahmed M. Abu‐Dief
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
- Chemistry Department, College of Science Taibah University Medina Saudi Arabia
| |
Collapse
|
26
|
El‐Remaily MAEAAA, Soliman AMM, Khalifa ME, El‐Metwaly NM, Alsoliemy A, El‐Dabea T, Abu‐Dief AM. Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5‐
a
]pyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Amerah Alsoliemy
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Tarek El‐Dabea
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Ahmed M. Abu‐Dief
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
- Department of Chemistry, College of Science Taibah University Madinah Saudi Arabia
| |
Collapse
|
27
|
Ali El‐Remaily MAEAA, Hamad HA, Soliman AMM, Elhady OM. Boosting the catalytic performance of manganese (III)‐porphyrin complex MnTSPP for facile one‐pot green synthesis of 1,4‐dihydropyridine derivatives under mild conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Hesham A. Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMR) City of Scientific Research and Technological Applications (SRTA‐City), New Borg El‐Arab City Alexandria Egypt
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw Warsaw Poland
| | | | - Omar M. Elhady
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
28
|
Ahmed EA, Soliman AM, Ali AM, Ali El‐Remaily MAEAA. Boosting the catalytic performance of zinc linked amino acid complex as an eco‐friendly for synthesis of novel pyrimidines in aqueous medium. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eman A. Ahmed
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Ahmed M.M. Soliman
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Ali M. Ali
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | | |
Collapse
|
29
|
E. Ali T, A. Assiri M, A. Shati A, Y. Alfaifi M, Eldin I. Elbehairi S, F. El-Kott A. One-Pot and Three-Component Synthesis of Some Novel Functionalized Chromonyl Pyrido[2,3-d]pyrimidines as Anticancer Agents. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Affiliation(s)
- Sana Sikandar
- Department of Chemistry Government College University Faisalabad Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry Government College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
31
|
Abd El Aleem Ali Ali El‐Remaily M, Elhady OM. Green Bio‐organic and Recoverable Catalyst Taurine (2‐aminoethanesulfonic acid) for Synthesis of Bio‐active Compounds 3,4‐Dihydropyrimidin Derivatives in Aqueous Medium. ChemistrySelect 2020. [DOI: 10.1002/slct.202002575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Omar M. Elhady
- Department of Chemistry, Faculty of Science Sohag University- 82524 Sohag Egypt
| |
Collapse
|
32
|
Mohamadpour F. Caffeine as a Naturally Green and Biodegradable Catalyst for Preparation of Dihydropyrano[2,3-c]pyrazoles. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1780883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Bansal R, Soni PK, Gupta N, Bhagyawant SS, Halve AK. Synthesis and Antibacterial Screening of Some Pyrazole Derivatives Catalyzed by Cetyltrimethylammoniumbromide (CTAB). Curr Org Synth 2020; 18:225-231. [PMID: 32562527 DOI: 10.2174/1570179417666200620220232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
AIMS In this article, we have developed an eco-friendly one-pot multi-component reaction methodology employed for the green synthesis of functionalized pyrazole derivatives viz cyclo-condensation of aromatic aldehydes, ethyl acetoacetate and phenyl hydrazine and/or hydrazine hydrate in the presence of cetyltrimethylammoniumbromide (CTAB) at 90°C temperature in an aqueous medium. MATERIALS AND METHODS In the present protocol, we developed a green method for the synthesis of functionalized pyrazole derivatives through one-pot, multi-component cyclo-condensation of aromatic aldehydes, phenyl hydrazine or hydrazine hydrate and ethyl acetoacetate using cetyltrimethylammoniumbromide (CTAB) as a catalyst in water as a solvent. Our methodology confers advantages such as short reaction time, atom economy, purification of the product without using column chromatographic and hazardous solvent. The reaction is being catalyzed by cetyltrimethylammoniumbromide (CTAB) and thus, products are formed under the green reaction conditions. RESULTS AND DISCUSSION Initially, the reaction of benzaldehyde and phenylhydrazine with ethyl acetoacetate was carried out in water at room temperature in the absence of the catalyst; no product was obtained after 24 h (Table 1 entry 1). When the reaction was carried out using L-proline as a catalyst in ethanol at 70°C, the yield of the product was 20%. CONCLUSION This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. We consider that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in the future. In conclusion, we have developed successfully a green and efficient one-pot multi-component methodology for the synthesis of substituted pyrazoles using CTAB as a catalyst in water as a solvent with excellent yields. Purifications of compounds were achieved without the use of traditional chromatographic procedures. This methodology has advantages of operational simplicity, clean reaction profiles and relatively broad scope, which make it more attractive for the diversity oriented synthesis of these heterocyclic libraries. In this methodology, we suggest a further alternative possibility for the formation of substituted pyrazoles. The compound 7h can be used as an anticancer drug in the pharma industry.
Collapse
Affiliation(s)
- Ravi Bansal
- School of Studies in Chemistry, Jiwaji University, Gwalior (M.P.), India
| | - Pradeep K Soni
- School of Studies in Chemistry, Jiwaji University, Gwalior (M.P.), India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior (M.P.), India
| | - Sameer S Bhagyawant
- School of Studies in Biotechnology, Jiwaji University, Gwalior (M.P.), India
| | - Anand K Halve
- School of Studies in Chemistry, Jiwaji University, Gwalior (M.P.), India
| |
Collapse
|
34
|
Sikandar S, Zahoor AF, Ahmad S, Anjum MN, Ahmad MN, Shah MSU. L-Cysteine Catalyzed Environmentally Benign One-pot Multicomponent Approach Towards the Synthesis of Dihydropyrano[2,3-c]pyrazole Derivatives. Curr Org Synth 2020; 17:457-463. [PMID: 32392115 DOI: 10.2174/1570179417666200511092332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pyrano[2,3-c]pyrazole derivatives are important building blocks of many biologically active compounds owing to their diverse biological potential for example, anti-inflammatory, anticancer, anti-microbial and anti-oxidant properties. OBJECTIVE Keeping in mind the wide range of applications of pyrano[2,3-c]pyrazoles, herein we intended to develop a novel synthetic methodology for dihydropyranopyrazoles. We were also interested in determining the influence of amino acids and dipeptides as a catalyst on the synthesis of pyrano[2,3-c]pyrazole derivatives. METHODS To achieve our objectives, we used a one-pot multi-component reaction of ethyl 3-oxobutanoate, propanedinitrile, hydrazine monohydrate and several substituted benzaldehydes by using different catalysts and solvents to synthesize our desired products in the presence of various catalysts. RESULTS AND DISCUSSION We found that optimal conditions for the preparation of pyrano[2,3-c]pyrazoles were L-cysteine (0.5 mol) in the presence of water:ethanol (9:1) at 90 °C. Various 1,4-dihydropyrano[2,3- c]pyrazoles were afforded by using several substituted benzaldehydes in 66-97% yields. CONCLUSION We described a green and environmentally benign method to synthesize pyrano[2,3-c]pyrazoles in a one-pot four component reaction of ethyl 3-oxobutanoate, propanedinitrile, hydrazine monohydrate and different substituted benzaldehyde in the presence of L-cysteine in aqueous ethanol (9:1) at 90 oC. Excellent yields of the products, simple work-up, easily available starting materials, use of green solvents, naturally occurring catalyst, non-toxicity, non-chromatographic purification and environmentally benign reaction conditions are some main advantages of this protocol.
Collapse
Affiliation(s)
- Sana Sikandar
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering & Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mirza Nadeem Ahmad
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | | |
Collapse
|
35
|
Saravana Ganesan N, Suresh P. Nitrogen‐Doped Graphene Oxide as a Sustainable Carbonaceous Catalyst for Greener Synthesis: Benign and Solvent‐free Synthesis of Pyranopyrazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202000748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nagappan Saravana Ganesan
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of ChemistryMadurai Kamaraj University Madurai 625021 India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of ChemistryMadurai Kamaraj University Madurai 625021 India
| |
Collapse
|
36
|
Ali El-Remaily MAEAA, Soliman AMM, Elhady OM. Green Method for the Synthetic Ugi Reaction by Twin Screw Extrusion without a Solvent and Catalyst. ACS OMEGA 2020; 5:6194-6198. [PMID: 32226904 PMCID: PMC7098038 DOI: 10.1021/acsomega.0c00369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/03/2020] [Indexed: 05/04/2023]
Abstract
This study describes the solvent and catalyst-free Ugi reaction by way of twin screw extrusion (TSE). Multicomponent chemical synthesis can be converted into a single process without repeated use of solvents through TSE. High synthetic yields are achieved in short reaction times and produced in solvent-free conditions, which lead to a more environmentally friendly process.
Collapse
|
37
|
Szlachcic P, Uchacz T, Gryl M, Danel A, Wojtasik K, Kolek P, Jarosz B, Stadnicka KM. Combined XRD and DFT studies towards understanding the impact of intramolecular H-bonding on the reductive cyclization process in pyrazole derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Bakthadoss M, Surendar M. Cascade annulation reaction (CAR): highly diastereoselective synthesis of pyranopyrazole scaffolds. RSC Adv 2020; 10:19003-19007. [PMID: 35518344 PMCID: PMC9053953 DOI: 10.1039/d0ra03400b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
An unprecedented domino protocol for the novel synthesis of highly diverse and functionalized tetrahydro pyranopyrazole scaffolds using chalcone epoxide has been reported for the first time. This synthetic protocol generates three consecutive stereogenic centres in a highly diastereoselective manner with the formation of vicinal diol and a quaternary carbon centre. A wide range of substrates were utilized for the scope of this methodology and provided very good yields of pyranopyrazoles. The pyranopyrazoles were also transformed into densely functionalized tetrasubstituted olefins. An unprecedented domino protocol for the novel synthesis of highly diverse and functionalized tetrahydro pyranopyrazole scaffolds using chalcone epoxide has been reported.![]()
Collapse
Affiliation(s)
| | - Manickam Surendar
- Department of Chemistry
- Pondicherry University
- Pondicherry 605014
- India
| |
Collapse
|
39
|
Synthesis and antimicrobial study of 1,4-dihydropyrano[2,3-c]pyrazole derivatives in the presence of amino-functionalized silica-coated cobalt oxide nanostructures as catalyst. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
El‐Remaily MAEAAA, Abu‐Dief AM, Elhady O. Green synthesis of TiO
2
nanoparticles as an efficient heterogeneous catalyst with high reusability for synthesis of 1,2‐dihydroquinoline derivatives. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ahmed M. Abu‐Dief
- Department of Chemistry, Faculty of ScienceSohag University Sohag 82524 Egypt
| | - O. Elhady
- Department of Chemistry, Faculty of ScienceSohag University Sohag 82524 Egypt
| |
Collapse
|
41
|
Mamaghani M, Hossein Nia R. A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1584576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Ezzatzadeh E, Hossaini Z. Four-component green synthesis of benzochromene derivatives using nano-KF/clinoptilolite as basic catalyst: study of antioxidant activity. Mol Divers 2019; 24:81-91. [PMID: 30830596 DOI: 10.1007/s11030-019-09935-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/26/2019] [Indexed: 11/24/2022]
Abstract
An efficient procedure for the synthesis of benzochromene derivatives employing 1-(6-hydroxy-2-isopropenyl-1-benzofuran-yl)-1-ethanone (euparin), aldehydes, alkyl bromides, dialkyl acetylenedicarboxylate and triphenylphosphine in the presence of KF/CP NPs as a heterogeneous base nano-catalyst in water at 80 °C is investigated. Also, the antioxidant activity of some synthesized compounds was studied. The workup of mixture of reaction is simple, and the products can be separated easily by filtration. KF/CP NPs showed a good improvement in the yield of the product and displayed significant reusable activity.
Collapse
Affiliation(s)
- Elham Ezzatzadeh
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
| | | |
Collapse
|
43
|
Neysi M, Zarnegaryan A, Elhamifar D. Core–shell structured magnetic silica supported propylamine/molybdate complexes: an efficient and magnetically recoverable nanocatalyst. NEW J CHEM 2019. [DOI: 10.1039/c9nj01160a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel core–shell structured magnetic silica supported propylamine/molybdate complex (Fe3O4@SiO2/Pr-NMo[Mo5O18]) is prepared, characterized and applied as an effective and easily recoverable nanocatalyst in the synthesis of pyrano-pyrazole derivatives.
Collapse
Affiliation(s)
- Maryam Neysi
- Department of Chemistry
- Yasouj University
- Yasouj
- Iran
| | | | | |
Collapse
|
44
|
Hajizadeh Z, Maleki A. Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.09.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Ezzatzadeh E. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/znb-2017-0177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Synthesis of α-aminophosphonate derivatives via the Kabachnik–Fields reaction is described using 1-(6-hydroxy-2-isopropenyl-1-benzofuran-yl)-1-ethanone, extracted from rhizomes of Petasites hybridus, primary amines and trialkyl phosphites in the presence of ZnO nanoparticles in water at room temperature. This procedure has advantages such as using natural products as precursors, employing water as a green solvent, good yields and easy separation of products.
Collapse
Affiliation(s)
- Elham Ezzatzadeh
- Department of Chemistry, Ardabil Branch , Islamic Azad University , P.O. Box: 163 , Ardabil , Iran , Tel.: +98114765161964
| |
Collapse
|
46
|
Beerappa M, Shivashankar K. Four component synthesis of highly functionalized pyrano[2,3-c]pyrazoles from benzyl halides. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1386788] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mallappa Beerappa
- Department of Chemistry, Bangalore University, Bangalore, Karnataka, India
| | | |
Collapse
|
47
|
Ghorbani‐Vaghei R, Izadkhah V. Preparation and characterization of hexamethylenetetramine‐functionalized magnetic nanoparticles and their application as novel catalyst for the synthesis of pyranopyrazole derivatives. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Vida Izadkhah
- Faculty of ChemistryBu‐Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
48
|
Khazaei A, Khazaei M, Nasrollahzadeh M. Nano-Fe 3 O 4 @SiO 2 supported Pd(0) as a magnetically recoverable nanocatalyst for Suzuki coupling reaction in the presence of waste eggshell as low-cost natural base. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.054] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3104-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Khodairy A, Ali AM, El-Wassimy MT. Synthesis of Novel Chromene, Pyridine, Pyrazole, Pyrimidine, and Imidazole Derivatives via
One-pot Multicomponent Reaction. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed Khodairy
- Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - Ali M. Ali
- Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | | |
Collapse
|