1
|
O'Brien NS, Gilbert J, McCluskey A, Sakoff JA. 2,3-Dihydroquinazolin-4(1 H)-ones and quinazolin-4(3 H)-ones as broad-spectrum cytotoxic agents and their impact on tubulin polymerisation. RSC Med Chem 2024; 15:1686-1708. [PMID: 38784470 PMCID: PMC11110758 DOI: 10.1039/d3md00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
Tubulin plays a central role in mitosis and has been the target of multiple anticancer drugs, including paclitaxel. Herein two separate families of 2,3-dihydroquinazoline-4(1H)-ones and quinazoline-4(3H) ones, comprising 57 compounds in total, were synthesised. Screening against a broad panel of human cancer cell lines (HT29 colon, U87 and SJ-G2 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, and MIA pancreas) reveals these analogues to be broad spectrum cytotoxic compounds. Of particular note, 2-styrylquinazolin-4(3H)-one 51, 2-(4-hydroxystyryl)quinazolin-4(3H)-one 63, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64 and 2-(3-methoxystyryl)quinazolin-4(3H)-one 65 and 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39 exhibited sub-μM potency growth inhibition values. Of these 1-naphthyl 39 has activity <50 nM against the HT29, U87, A2780, H460 and BE2-C cell lines. Molecular modelling of these compounds, e.g. 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64, 2-(3-methoxystyryl)quinazolin-4(3H)-one 65, and 2-(4-methoxystyryl)quinazolin-4(3H)-one 50 docked to the known tubulin polymerisation inhibitor sites highlighted well conserved interactions within the colchicine binding pocket. These compounds were examined in a tubulin polymerisation assay alongside the known tubulin polymerisation promotor, paclitaxel (69), and tubulin inhibitor, nocodazole (68). Of the analogues examined, indoles 43 and 47 were modest promotors of tubulin polymerisation, but less effective than paclitaxel. Analogues 39, 64, and 65 showed reduced microtubule formation consistent with tubulin inhibition. The variation in ring methoxy substituent with 50, 64 and 65, from o- to m- to p-, results in a concomitant reduction in cytotoxicity and a reduction in tubulin polymerisation, with p-OCH350 being the least active in this series of analogues. This presents 64 as a tubulin polymerisation inhibitor possessing novel chemotype and sub micromolar cytotoxicity. Naphthyl 39, with complete inhibition of tubulin polymerisation, gave rise to a sub 0.2 μM cell line cytotoxicity. Compounds 39 and 64 induced G2 + M cell cycle arrest indicative of inhibition of tubulin polymerisation, with 39 inducing an equivalent effect on cell cycle arrest as nocodazole (68).
Collapse
Affiliation(s)
- Nicholas S O'Brien
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| |
Collapse
|
2
|
Liu Y, Liu J, Yan P, Kachanuban K, Liu P, Jia A, Zhu W. Carbazole and Quinazolinone Derivatives from a Fluoride-Tolerant Streptomyces Strain OUCMDZ-5511. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6424-6431. [PMID: 38470989 DOI: 10.1021/acs.jafc.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Six new 9H-carbazole derivatives (1-6) and nine previously reported compounds (7-15) were isolated from a fermented solid medium of the Thailand mangrove-derived Streptomyces strain, OUCMDZ-5511, under fluoride stress. Compounds 2-5, 12, and 15 were exclusively present in the fluoride-supplemented fermentation medium, while compounds 7-9, 13, and 14 were newly discovered natural products. The molecular structures of the compounds were identified by a spectroscopic analysis. The new compound 2 displayed antiquorum sensing activity against Chromobacterium violaceum ATCC 12472 by reducing the violacein production and inhibiting the biofilm formation in a concentration-dependent manner. The study revealed that compound 2 could be a novel potential inhibitor of quorum sensing.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Pengcheng Yan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Konthorn Kachanuban
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Fishery Product, Faculty of Fisheries of Kasetsart University, Bangkok 10900, Thailand
| | - Peipei Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Aiqun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
3
|
Tokalı FS, Şenol H, Yetke Hİ, Hacıosmanoğlu-Aldoğan E. Novel quinazoline-chromene hybrids as anticancer agents: Synthesis, biological activity, molecular docking, dynamics and ADME studies. Arch Pharm (Weinheim) 2023; 356:e2300423. [PMID: 37736677 DOI: 10.1002/ardp.202300423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
In this study, new quinazoline-chromene hybrid compounds were synthesized. The cytotoxic effects on cell viability of the hybrid compounds were tested against A549 human lung adenocarcinoma and BEAS-2B healthy bronchial epithelial cell lines in vitro. In addition, the ability of the active compounds to inhibit cell migration was tested. Molecular docking studies were performed to evaluate the ligand-protein interactions, and molecular dynamics simulations were performed to determine the interactions and stability of ligand-protein complexes. In silico absorption, distribution, metabolism, and excretion (ADME) studies were conducted to estimate the drug-likeness of the compounds. Compounds 4 (IC50 = 51.2 µM) and 5 (IC50 = 44.2 µM) were found to be the most active agents against A549 cells. They are found to be more selective against A549 cells than the reference drug doxorubicin. They also have the ability to significantly inhibit cell migration. They have the best docking scores against epidermal growth factor receptor (EGFR) (-11.300 and -11.226 kcal/mol) and vascular endothelial growth factor receptor 2 (VEGFR2) (-10.987 and -11.247 kcal/mol), respectively. In MD simulations, compounds 4 and 5 have strong hydrogen bond interactions above 80% of simulation times and showed a low ligand root mean square deviation (RMSD) around 2 Å. According to the ADME analysis, compounds 4 and 5 exhibit excellent drug-likeness and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Türkiye
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | - Hande İpek Yetke
- Department of Biophysics, Faculty of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | | |
Collapse
|
4
|
Lodhi A, Dalai AK, Maheria KC. Synthesis of biologically active dihydroquinazolinone catalyzed by the micro–meso-composite of zeolite H-BEA. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Shi R, Wang X, Zhang X, Chen S, Wang ZL, Qi H, Xu XM. Acid/Base-Steered Cascade Cyclization: An Efficient One-Pot Access to Diverse Isobenzofuranone and Isoindolobenzoxazinone Derivatives. Molecules 2023; 28:molecules28031443. [PMID: 36771107 PMCID: PMC9921644 DOI: 10.3390/molecules28031443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We herein report the acid/base-steered two distinct reaction pathways of 2-acylbenzoic acids with isatoic anhydrides. In the presence of Na2CO3, the cascade process consists of the cyclization of 2-acetylbenzoic acid and nucleophilic ring-opening reaction of isatoic anhydride to furnish isobenzofuranone derivatives with high efficiency. However, p-toluenesulfonic acid can promote the product isobenzofuranones to undergo sequential intramolecular rearrangment, nucleophilic addition and cyclization reaction to produce diverse isoindolobenzoxazinones in good yields. The synthetic utility of this method was further demonstrated by the gram-scale preparation of the desired products and the facile transformations of the resulting products.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiangmin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (X.W.); (Z.-L.W.); (X.-M.X.)
| | - Xuesi Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sen Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zu-Li Wang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: (X.W.); (Z.-L.W.); (X.-M.X.)
| | - Huijing Qi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (X.W.); (Z.-L.W.); (X.-M.X.)
| |
Collapse
|
6
|
Reddy Manne M, Panicker RR, Ramakrishnan K, Hareendran HMK, Kumar Pal S, Kumar S, Pallepogu R, Desikan R, Sivaramakrishna A. Synthesis and Biological Evaluation of a Series of Quinoline‐Based Quinazolinones and Carbamic Anhydride Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Madhava Reddy Manne
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| | - Rakesh R Panicker
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| | - Kumar Ramakrishnan
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| | - Hima M. K. Hareendran
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| | - Sudhir Kumar Pal
- Center for Bio-separation Technology Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - Sanjit Kumar
- Center for Bio-separation Technology Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - Raghavaiah Pallepogu
- Department of Chemistry Central University of Karnataka Kadaganchi Kalaburagi – 585 367 Karnataka India
| | - Rajagopal Desikan
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| | - Akella Sivaramakrishna
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| |
Collapse
|
7
|
The IMDAV approach towards thieno- and furoisoindolo[2,1-a]quinazolines-11(13)-carboxylic acids possessing antimicrobial and antiviral activities. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Parthiban D. Plant-Based Bronsted Acidic Polyphenol Catalyzed Synthesis of 3'-Phenyl-1' H-Spiro[Cyclohexane-1,2'-Quinazolin]-4'(3' H)-Ones and 3'-Phenyl-1' H-Spiro[Cyclopentane-1,2'-Quinazolin]-4'(3' H)-One Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2146728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Devendiran Parthiban
- P.G. & Research Department of Chemistry, Rajeshwari Vedachalam Govt Arts College, Chengalpattu, India
| |
Collapse
|
9
|
FaniMoghadam H, Dekamin MG, Rostami N. Para-Aminobenzoic acid grafted on silica-coated magnetic nanoparticles: a highly efficient and synergistic organocatalyst for on-water synthesis of 2,3-dihydroquinazolin-4(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04736-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Komar M, Kraljević TG, Jerković I, Molnar M. Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3 H)-Ones: A Comparison of Selected Green Chemistry Methods. Molecules 2022; 27:558. [PMID: 35056873 PMCID: PMC8780518 DOI: 10.3390/molecules27020558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate was performed in 20 choline chloride-based DESs at 80 °C to find the best solvent. Based on the product yield, choline chloride:urea (1:2) DES was found to be the most effective, while DESs acted both as solvents and catalysts. Desired compounds were prepared with moderate to good yields using stirring, microwave-assisted, and ultrasound-assisted synthesis. Significantly, higher yields were obtained with mixing and ultrasonication (16-76%), while microwave-induced synthesis showed lower effectiveness (13-49%). The specific contribution of this research is the use of DESs in combination with the above-mentioned green techniques for the synthesis of a wide range of derivatives. The structures of the synthesized compounds were confirmed by 1H and 13C NMR spectroscopy.
Collapse
Affiliation(s)
- Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia;
| | - Tatjana Gazivoda Kraljević
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia;
| |
Collapse
|
11
|
Agarwal S, Dutta A, Sarma D, Deori K. In situ fabrication of HDA-mediated NiFe–Fe 2O 3 nanorods: an efficient and recyclable heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolin-4(1 H)-ones in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj02046g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, facile and an effective route for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones via multi-component reactions using newly developed NiFe–Fe2O3 nanorods as heterogeneous catalysts.
Collapse
Affiliation(s)
- Soniya Agarwal
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Apurba Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Kalyanjyoti Deori
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| |
Collapse
|
12
|
Bui HTB, Do KM, Nguyen HTD, Mai HV, Danh TLD, Tran DQ, Morita H. Efficient one-pot tandem synthesis and cytotoxicity evaluation of 2,3-disubstituted quinazolin-4(3H)-one derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Bodaghifard MA, Safari S. Cu(II) complex-decorated hybrid nanomaterial: a retrievable catalyst for green synthesis of 2,3-dihydroquinazolin-4(1 H)-ones. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1905803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Somayeh Safari
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
14
|
Lin Z, Qian J, Lu P, Wang Y. Syntheses of 2-Iminoindolin-3-ones and 2-Alknyl-2,3-dihydroquinazolin-4(1 H)-ones from 3-Diazoindolin-2-imines. J Org Chem 2020; 85:11766-11777. [PMID: 32842736 DOI: 10.1021/acs.joc.0c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Diazoindolin-2-imines reacted with nitrones to furnish 2-iminoindolin-3-ones through a Au(I)-catalyzed cascade oxygen transfer/imine exchange process. The prepared 2-iminoindolin-3-ones could be further transformed into 2-alknyl-2,3-dihydroquinazolin-4(1H)-ones through a Ag(I)-catalyzed reaction with terminal alkynes. A MeOH-triggered ring expansion mechanism involving cyclic iminium formation and nucleophilic addition is proposed for this novel alkynylation reaction. This two-step procedure provides a general and convenient approach to 2-alknyl-2,3-dihydroquinazolin-4(1H)-ones, which are privileged structures in medicinal chemistry.
Collapse
Affiliation(s)
- Zhenwei Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jing Qian
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
15
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|
16
|
Shokri Z, Azimi N, Moradi S, Rostami A. A novel magnetically separable laccase‐mediator catalyst system for the aerobic oxidation of alcohols and 2‐substituted‐2,3‐dihydroquinazolin‐4(1
H
)‐ones under mild conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Shokri
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Nahid Azimi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Sirvan Moradi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| |
Collapse
|
17
|
Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 as a novel and recoverable hybrid catalyst for expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04179-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Mirjalili BBF, Eliin SD, Fazeli-Attar SA. Synthesis of 2,3-dihydroquinazolinones using nano-ovalbumin as a non-toxic biocatalyst. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2652-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
19
|
Oudi S, Oveisi AR, Daliran S, Khajeh M, Teymoori E. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. J Colloid Interface Sci 2020; 561:782-792. [DOI: 10.1016/j.jcis.2019.11.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/06/2023]
|
20
|
Alipour M, Hossaini Z, Khaksar S, Rostami-Charati F. 3,5-Bis(trifluoromethyl) Phenylammonium triflate(BFPAT) as a Novel Organocatalyst for the Efficient Synthesis of 2,3-dihydroquinazolin-4(1H)-one Derivatives. Curr Org Synth 2020; 17:40-45. [PMID: 32103716 DOI: 10.2174/1570179417666191218115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVES A one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives by threecomponent cyclo-condensation of isatoic anhydride, aldehydes and amine or ammonium acetate has been developed using 3,5-Bis(trifluoromethyl) phenylammonium triflate (BFPAT) as a new organocatalyst. MATERIALS AND METHODS All of the obtained products are known compounds and identified by IR, 1HNMR, 13CNMR and melting points. RESULTS A wide variety of structurally different aldehydes reacted easily and rapidly to result in the relating 2,3-dihydroquinazolin-4(1H)-ones in good to excellent yield. CONCLUSION We have demonstrated an extremely effective and new process for synthesizing 2,3- dihydroquinazolin-4(1H)-ones employing BFPAT as a novel organocatalyst in one-pot fashion.
Collapse
Affiliation(s)
- Mandana Alipour
- Department of Chemistry, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran
| | | | - Samad Khaksar
- Department of Chemistry, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran.,Department of Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Faramarz Rostami-Charati
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, P.O. Box 163, Gonbad Kavous, Iran.,Research Center for Conservation of Culture Relics (RCCCR), Research Institute of Cultural Heritage & Tourism, Tehran, Iran
| |
Collapse
|
21
|
O'Brien NS, McCluskey A. A Facile Microwave and SnCl2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Aust J Chem 2020. [DOI: 10.1071/ch20101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1% SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99%. This process was highly tolerant of aliphatic, aromatic, heterocyclic, and acyclic aldehydes, but furan, pyrrole, and thiophene aldehyde reactivity correlated with propensity towards electrophilic addition and/or Diels–Alder addition. As a result, thiophene afforded high yields (80%) whereas pyrrole carboxaldehyde failed to react. With simple cinnamaldehydes, and in the SbCl3-mediated reaction, and with α,β-unsaturated aldehydes the equivalent quinazolin-4(3H)-ones, and not the 2,3-dihydroquinazolin-4(1H)-ones, was favoured.
Collapse
|
22
|
Ahmadian F, Barmak A, Ghaderi E, Bavadi M, Raanaei H, Niknam K. Synthesis of pyrazol-quinazolinones and 2,3-dihydroquinazolin-4(1H)-ones using CoAl2O4 nanoparticles as heterogeneous catalyst. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01729-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Dandia A, Saini P, Bansal S, Parewa V. One‐Pot Copper(I)‐Catalyzed Synthesis of 2‐Aryl‐quinazolin‐4(3
H
)‐ones
via
N‐ benzylation / C
sp3
– H Oxidation/ CN Hydrolysis/Cyclization. ChemistrySelect 2019. [DOI: 10.1002/slct.201902622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anshu Dandia
- Centre of Advanced StudiesDepartment of ChemistryUniversity of Rajasthan Jaipur India
| | - Pratibha Saini
- Centre of Advanced StudiesDepartment of ChemistryUniversity of Rajasthan Jaipur India
| | - Sarika Bansal
- Centre of Advanced StudiesDepartment of ChemistryUniversity of Rajasthan Jaipur India
| | - Vijay Parewa
- Centre of Advanced StudiesDepartment of ChemistryUniversity of Rajasthan Jaipur India
| |
Collapse
|
24
|
Tashrifi Z, Mohammadi-Khanaposhtani M, Biglar M, Larijani B, Mahdavi M. Isatoic Anhydride: A Fascinating and Basic Molecule for the Synthesis of Substituted Quinazolinones and Benzo di/triazepines. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190701142930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article is focused on the synthesis of compounds with quinazolinones and benzo di/triazepine scaffolds. These invaluable derivatives are of great interest in medicinal and pharmaceutical studies because of their important biological properties. Quinazolinones have diverse applications due to their antibacterial, analgesic, antiinflammatory, antifungal, antimalarial, antihypertensive, CNS depressant, anticonvulsant, antihistaminic, antiparkinsonism, antiviraland and anticancer activities. On the other hand, pharmacological properties of benzodiazepines include antianxiety, anticancer, anticonvulsant, antagonists of cholecystokinin receptors (CCK), antileishmanial, sleep-inducing muscle relaxant and several other useful and interesting properties. As an example, three main categories of drugs, namely anxiolytics, sedative hypnotics (sleep inducers) and anticonvulsants are constructed by 1,4-benzodiazepines. Finally, benzotriazepines are believed to possess various pharmacological properties such as antipsychotic and antitumor activities. Hence, this review is divided into three major sections, considering quinazolinones, benzodiazepines and benzotriazepines. In the first section, we take a brief look at various approaches towards synthesis of substituted quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones. Also in this section, we try to give an overview of the synthetic routes and strategies recently reported for the generation of various classes of substituted 4(3H)-quinazolinones and 2,3-dihydroquinazolin-4(1H)-ones. Accordingly, quinazolin-4(3H)-ones, were subdivided into three major classes: 2-substituted, 3-substituted and 2,3-disubstituted-quinazolinones. 2,3- dihydroquinazolin-4(1H)-ones also were subdivided into six sub-categories: 2-monosubstituted, 2,2- disubstituted, 2,3-disubstituted, 1,2,3-trisubstituted, 2,2,3-trisubstituted 2,3-dihydroquinazolin-4(1H)-ones and boron-containing quinazoline-4(1H)-ones. In the other two sections, we cover the literature related to synthesis of benzo di/triazepine. The most recent developments are highlighted with a special emphasis on new synthetic routes based on isatoic anhydride as starting material.
Collapse
Affiliation(s)
- Zahra Tashrifi
- Department of Chemistry, University of Guilan, Rasht PO Box 41335-1914, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Ultrasound-assisted synthesis of heterocyclic compounds. Mol Divers 2019; 24:771-820. [PMID: 31165431 DOI: 10.1007/s11030-019-09964-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/25/2019] [Indexed: 02/04/2023]
|
26
|
Abdullaha M, Mohammed S, Ali M, Kumar A, Vishwakarma RA, Bharate SB. Discovery of Quinazolin-4(3 H)-ones as NLRP3 Inflammasome Inhibitors: Computational Design, Metal-Free Synthesis, and in Vitro Biological Evaluation. J Org Chem 2019; 84:5129-5140. [PMID: 30896160 DOI: 10.1021/acs.joc.9b00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an important therapeutic target for a number of human diseases. Herein, computationally designed series of quinazolin-4(3 H)-ones were synthesized using iodine-catalyzed coupling of arylalkynes (or styrenes) with O-aminobenzamides. The key event in this transformation involves the oxidative cleavage of the C-C triple/double bond and the release of formaldehyde. The reaction relies on the C-N bond formation along with the C-C bond cleavage under metal-free conditions. The nitro-substituted quinazolin-4(3 H)-one 2k inhibited NLRP3 inflammasome (IC50 5 μM) via the suppression of IL-1β release from ATP-stimulated J774A.1 cells.
Collapse
|
27
|
Banerjee B. Ultrasound and Nano-Catalysts: An Ideal and Sustainable Combination to Carry out Diverse Organic Transformations. ChemistrySelect 2019. [DOI: 10.1002/slct.201803081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry; Indus International University; V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| |
Collapse
|
28
|
Gajula KS, Mameda N, Kodumuri S, Chevella D, Banothu R, Amrutham V, Kutepov BI, Nama N. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones from anthranilamide and ketones over Hβ zeolite in aqueous media*. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1506033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Krishna Sai Gajula
- C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naresh Mameda
- C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srujana Kodumuri
- C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Durgaiah Chevella
- C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Rammurthy Banothu
- C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vasu Amrutham
- C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Narender Nama
- C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
29
|
Copper-catalyzed synthesis of 2,3-disubstituted quinazolin-4(3H)-ones from benzyl-substituted anthranilamides. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2018-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
An efficient, practical approach to the copper-catalyzed synthesis of 2,3-disubstituted quinazolin-4(3H)-one derivatives is described. The preparation involves treatment of benzyl amines with benzyl anthranilamides in the presence of Cu(OAc)2 and tetra-n-butylammonium bromide (TBAB).
Collapse
|
30
|
Abstract
The bismuth-catalyzed oxidative condensation of aldehydes with 2-aminobenzamide under aerobic conditions is reported using ethanol as the solvent. Good to excellent isolated yields (68-95%) of the corresponding 2-substituted quinazolinones were obtained under mild reaction conditions with excellent functional group tolerance. The quinazolinones were further functionalized to afford N-allylated quinazolinones, 2-aminopyridine derivatives, and annulated polyheterocyclic compounds via transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Sandeep R. Vemula
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Gregory R. Cook
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
31
|
Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Adv 2018; 8:20894-20921. [PMID: 35542353 PMCID: PMC9080947 DOI: 10.1039/c8ra02827c] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
2,3-Dihydroquinazolin-4-one (DHQ) belongs to the class of nitrogen-containing heterocyclic compounds representing a core structural component in various biologically active compounds. In the past decades, several methodologies have been developed for the synthesis of the DHQ framework, especially the 2-substituted derivatives. Unfortunately, multistep syntheses, harsh reaction conditions, and the use of toxic reagents and solvents have limited their full potential as a versatile fragment. Recently, use of green chemistry and alternative strategies are being explored to prepare diverse DHQ derivatives. This fragment is used as a synthon for the preparation of biologically active quinazolinones and as a functional substrate for the synthesis of modified DHQ derivatives exhibiting different biological properties. In this review, we provide a comprehensive assessment of the synthesis and biological evaluations of DHQ derivatives.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| |
Collapse
|
32
|
Zhang J, Ma Y, Ma Y. Synthesis of Secondary Amides through the Palladium(II)-Catalyzed Aminocarbonylation of Arylboronic Acids with Amines or Hydrazines and Carbon Monoxide. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry & Chemical Engineering; Shaanxi University of Science & Technology; Weiyang Campus 710021 Xi′an People's Republic of China
| | - Yuqiang Ma
- College of Chemistry & Chemical Engineering; Shaanxi University of Science & Technology; Weiyang Campus 710021 Xi′an People's Republic of China
| | - Yangmin Ma
- College of Chemistry & Chemical Engineering; Shaanxi University of Science & Technology; Weiyang Campus 710021 Xi′an People's Republic of China
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry; Ministry of Education; Shaanxi University of Science and Technology; Weiyang Campus 710021 Xi'an People's Republic of China
| |
Collapse
|
33
|
Poudel TN, Khanal HD, Lee YR. Base-promoted ring opening of 3-chlorooxindoles for the construction of 2-aminoarylthioates and their transformation to quinazolin-4(3H)-ones. NEW J CHEM 2018. [DOI: 10.1039/c8nj00195b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cesium carbonate-promoted synthesis of diverse 2-aminoarylthioates via ring opening of 3-chlorooxindoles with thiols, and their synthetic applications is demonstrated.
Collapse
Affiliation(s)
- Tej Narayan Poudel
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| |
Collapse
|
34
|
Toze FAA, Zaytsev VP, Chervyakova LV, Kvyatkovskaya EA, Dorovatovskii PV, Khrustalev VN. Crystal structure of 3-benzyl-2-[( E)-2-(furan-2-yl)ethen-yl]-2,3-di-hydro-quinazolin-4(1 H)-one and 3-benzyl-2-[( E)-2-(thio-phen-2-yl)ethen-yl]-2,3-di-hydro-quinazolin-4(1 H)-one from synchrotron X-ray diffraction. Acta Crystallogr E Crystallogr Commun 2018; 74:10-14. [PMID: 29416882 PMCID: PMC5778476 DOI: 10.1107/s2056989017017479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022]
Abstract
The chiral title compounds, C21H18N2O2, (I), and C21H18N2OS, (II) - products of the three-component reaction between benzyl-amine, isatoic anhydride and furyl- or thienyl-acrolein - are isostructural and form isomorphous racemic crystals. The tetra-hydro-pyrimidine ring in (I) and (II) adopts a sofa conformation. The amino N atom has a trigonal-pyramidal geometry [sum of the bond angles is 347.0° for both (I) and (II)], whereas the amido N atom is flat [sum of the bond angles is 359.3° for both (I) and (II)]. The furyl- and thienylethenyl substituents in (I) and (II) are planar and the conformation about the bridging C=C bond is E. These bulky fragments occupy the axial position at the quaternary C atom of the tetra-hydro-pyrimidine ring, apparently, due to steric reasons. In the crystals, mol-ecules of (I) and (II) form hydrogen-bonded helicoidal chains propagating along [010] by strong inter-molecular N-H⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Flavien A. A. Toze
- Department of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
| | - Vladimir P. Zaytsev
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
| | - Lala V. Chervyakova
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
| | - Elisaveta A. Kvyatkovskaya
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation
| | - Victor N. Khrustalev
- Inorganic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
| |
Collapse
|
35
|
The role of pyruvic acid as starting material in some organic reactions in the presence of SBA-Pr-SO3H nanocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3103-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Green and efficient synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in aqueous medium using ZnFe2O4 catalyst under microwave irradiation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1124-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Rostami‐Vartooni A. Green synthesis of CuO nanoparticles loaded on the seashell surface using
Rumex crispus
seeds extract and its catalytic applications for reduction of dyes. IET Nanobiotechnol 2017; 11:349-359. [DOI: 10.1049/iet-nbt.2016.0149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Akbar Rostami‐Vartooni
- Department of ChemistryFaculty of ScienceUniversity of QomP.O. Box 37185‐359QomIran
- Center of Environmental ResearchesUniversity of QomQomIran
| |
Collapse
|
38
|
Shaabani A, Afshari R, Hooshmand SE. Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: a bio-nanoreactor with extremely high activity toward click-multi-component reactions. NEW J CHEM 2017. [DOI: 10.1039/c7nj01150d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we have designed a procedure for the synthesis of a bio-nanoreactor catalyst, crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes (CS NPs/MWCNT@Fe3O4), via an in situ ionotropic gelation method.
Collapse
Affiliation(s)
- Ahmad Shaabani
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | - Ronak Afshari
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | | |
Collapse
|
39
|
Ramakrishna KKG, Thakur RK, Pasam VR, Pandey J, Mahar R, Shukla SK, Tamrakar AK, Tripathi RP. Synthesis of novel glycosyl-1,2,3-1H-triazolyl methyl quinazolin-4(3H)-ones and their effect on GLUT4 translocation. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Zhang J, Cheng P, Ma Y, Liu J, Miao Z, Ren D, Fan C, Liang M, Liu L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Synthetic strategy with representation on mechanistic pathway for the therapeutic applications of dihydroquinazolinones. Eur J Med Chem 2016; 123:596-630. [DOI: 10.1016/j.ejmech.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/25/2023]
|
42
|
Sharma R, Vishwakarma RA, Bharate SB. Bimetallic Cu-Mn-Catalyzed Synthesis of 2-Arylquinazolin-4(3H)-ones: Aqueous Ammonia as Source of a Ring Nitrogen Atom. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rohit Sharma
- Medicinal Chemistry Division; Academy of Scientific & Innovative Research (AcSIR); CSIR - Indian Institute of Integrative Medicine; Canal Road 180001 Jammu India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division; Academy of Scientific & Innovative Research (AcSIR); CSIR - Indian Institute of Integrative Medicine; Canal Road 180001 Jammu India
| | - Sandip B. Bharate
- Medicinal Chemistry Division; Academy of Scientific & Innovative Research (AcSIR); CSIR - Indian Institute of Integrative Medicine; Canal Road 180001 Jammu India
| |
Collapse
|
43
|
Solvent-free copper-catalyzed three-component synthesis of 2-substituted quinazolin-4(3H)-ones. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1804-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
A novel and efficient synthesis of 2-substituted quinazolin-4(3H)-ones by the reaction of (het)arylmethanamines with isatoic anhydride. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Upadhyaya K, Thakur RK, Shukla SK, Tripathi RP. One-Pot Copper(I)-Catalyzed Ligand/Base-Free Tandem Cyclooxidative Synthesis of Quinazolinones. J Org Chem 2016; 81:5046-55. [DOI: 10.1021/acs.joc.6b00599] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kapil Upadhyaya
- Medicinal and Process Chemistry Division, ‡Sophisticated Analytical Instrument
Facility, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10,
Jankipuram Extension, Sitapur Road, Lucknow-226031, India
| | - Ravi Kumar Thakur
- Medicinal and Process Chemistry Division, ‡Sophisticated Analytical Instrument
Facility, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10,
Jankipuram Extension, Sitapur Road, Lucknow-226031, India
| | - Sanjeev K. Shukla
- Medicinal and Process Chemistry Division, ‡Sophisticated Analytical Instrument
Facility, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10,
Jankipuram Extension, Sitapur Road, Lucknow-226031, India
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, ‡Sophisticated Analytical Instrument
Facility, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10,
Jankipuram Extension, Sitapur Road, Lucknow-226031, India
| |
Collapse
|
46
|
Abbas SY, El-Bayouki KAM, Basyouni WM. Utilization of isatoic anhydride in the syntheses of various types of quinazoline and quinazolinone derivatives. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1177087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Samir Y. Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Khairy A. M. El-Bayouki
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wahid M. Basyouni
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
47
|
One-Pot Three-Component Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones in the Presence of a Molecular Sieve Supported Lanthanum Catalyst. Catal Letters 2016. [DOI: 10.1007/s10562-016-1734-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Zhaleh S, Hazeri N, Maghsoodlou MT. Green protocol for synthesis of 2,3-dihydroquinazolin-4(1H)-ones: lactic acid as catalyst under solvent-free condition. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2469-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Zhang J, Zhao J, Wang L, Liu J, Ren D, Ma Y. Design, synthesis and docking studies of some spiro-oxindole dihydroquinazolinones as antibacterial agents. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Hajjami M, Ghorbani-Choghamarani A, Ghafouri-Nejad R, Tahmasbi B. Efficient preparation of boehmite silica dopamine sulfamic acid as a novel nanostructured compound and its application as a catalyst in some organic reactions. NEW J CHEM 2016. [DOI: 10.1039/c5nj03546e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nano-boehmite was prepared in water at room temperature using commercially available materials and applied as supports for the preparation of a new catalyst.
Collapse
Affiliation(s)
- Maryam Hajjami
- Department of Chemistry
- Faculty of Science
- Ilam University
- Ilam
- Iran
| | | | | | - Bahman Tahmasbi
- Department of Chemistry
- Faculty of Science
- Ilam University
- Ilam
- Iran
| |
Collapse
|