1
|
You HL, Zhou B, Guo MJ, Zhao XM, Li XL, Shen XC, Zhang NL. Monoterpene-chalcone conjugates and diarylheptanoids isolated from the seeds of Alpinia katsumadai Hayata with cytotoxic activity. PHYTOCHEMISTRY 2024; 225:114197. [PMID: 38945281 DOI: 10.1016/j.phytochem.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Five undescribed monoterpene-chalcone conjugates (1-5), one undescribed hypothetical precursor of diarylheptanoid (6), two undescribed diarylheptanoids (7-8), and fourteen known compounds (9-22) were isolated from the seeds of Alpinia katsumadai. Their structures were elucidated through the interpretation of HRESIMS, NMR, ECD, and X-ray diffraction data. MTT assays on human cancer cell lines (HepG2, A549, SGC7901, and SW480) revealed that compounds 3-8, 11, and 13 exhibited broad-spectrum antiproliferative activities with IC50 values ranging from 3.59 to 21.78 μM. B cell lymphoma 2 was predicted as the target of sumadain C (11) by network pharmacology and verified by homogeneous time-resolved fluorescence assay and molecular docking.
Collapse
Affiliation(s)
- Hua-Lin You
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Bo Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Meng-Jia Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Xin-Man Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Xiao-Long Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China.
| | - Nen-Ling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
2
|
Li YP, Liu H, Zhao XC, Tang XL, Shan P, Zhang H. Rare flavanone-diarylheptanoid hybrids from Typha angustifolia shows anti breast cancer activity via activating TGF-β1/Smad signaling pathway. Eur J Med Chem 2024; 268:116220. [PMID: 38387332 DOI: 10.1016/j.ejmech.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Four new flavanone-diarylheptanoid hetero dimers, typhatifolins A-D (1-4), were separated from the pollen of a widely distributed medicinal plant Typha angustifolia. Structures of these rare hybrids were elucidated by detailed interpretation of spectroscopic data, and their absolute configurations were determined on the basis of Mosher's method and ECD analyses. All the four compounds showed moderate to significant cytotoxicities against a panel of tumor cell lines with IC50 values ranging from 0.67 to 12.48 μM. Further in vitro antitumor evaluation for typhatifolin B (TTB, 2) on two breast cancer cells (4T1 and MDA-MB231) revealed that it could remarkably induce cell apoptosis and G0/G1 cycle arrest, as well as block cell migration and invasion. Mechanistically, TTB could exert its antitumor effect via activating the TGF-β1 (transforming growth factor beta 1) signaling pathway as evidenced by RNA-seq analysis and immunoblotting experiments, which was further corroborated by treating cancer cells with a TGF-β signaling inhibitor. Lastly, the in vivo anti breast cancer activity was demonstrated by applying the mixture of typhatifolins A-D to a preclinical animal model.
Collapse
Affiliation(s)
- Yu-Peng Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hu Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xue-Chun Zhao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xue-Lian Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
4
|
Wang XB, Yang CS, Luo JG, Zhang C, Luo J, Yang MH, Kong LY. Experimental and theoretical calculation studies on the structure elucidation and absolute configuration of calyxins from Alpinia katsumadai. Fitoterapia 2017; 119:121-129. [PMID: 28456555 DOI: 10.1016/j.fitote.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022]
Abstract
Six novel calyxins, named calyxin T-W, ent-calyxin T and ent-calyxin U were isolated from the seeds of Alpinia katsumadai Hayata. Their relative configurations were elucidated by means of detailed UV, IR, NMR and MS spectroscopic data. Their absolute configurations were assigned by collaborative studies on single crystal X-ray diffraction analysis, Mosher's method, electronic circular dichroism (ECD), optical rotation and theoretical calculations. These compounds are Friedel-Cranft alkylation adducts composed of coexisted diarylheptanoids and flavanone from the seeds of Alpinia katsumadai. The antiproliferative activity of the six compounds against NCI-H460, HeLa, SMMC-7721 and HCT-116 cell lines was also reported, and most of them showed moderate to strong activities.
Collapse
Affiliation(s)
- Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chang-Shui Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Medical school, Yangzhou University, 11 Huaihai Ave.,Yangzhou 225001, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Ave., Yangzhou 225009, PR China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Ma XN, Xie CL, Miao Z, Yang Q, Yang XW. An overview of chemical constituents from Alpinia species in the last six decades. RSC Adv 2017. [DOI: 10.1039/c6ra27830b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpinia species is one of the most important genera of the Zingiberaceae family. Up to 2015, 544 compounds with various bioactivities were isolated, the major components are diarylheptanoids (143) and sesquiterpenoids (132).
Collapse
Affiliation(s)
- Xiao-Ni Ma
- State Key Laboratory Breeding Base of Marine Genetic Resources
- Key Laboratory of Marine Genetic Resources
- Fujian Key Laboratory of Marine Genetic Resources
- Third Institute of Oceanography
- State Oceanic Administration
| | - Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources
- Key Laboratory of Marine Genetic Resources
- Fujian Key Laboratory of Marine Genetic Resources
- Third Institute of Oceanography
- State Oceanic Administration
| | - Zi Miao
- State Key Laboratory Breeding Base of Marine Genetic Resources
- Key Laboratory of Marine Genetic Resources
- Fujian Key Laboratory of Marine Genetic Resources
- Third Institute of Oceanography
- State Oceanic Administration
| | - Quan Yang
- Department of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources
- Key Laboratory of Marine Genetic Resources
- Fujian Key Laboratory of Marine Genetic Resources
- Third Institute of Oceanography
- State Oceanic Administration
| |
Collapse
|