1
|
Two-photon AIEgen based on dicyanoisophorone derivative: Synthesis, characterization and cells imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Jadhao AR, Patel H, Kodam KM, Gupte A, Waghmode SB. Selective oxidation of benzylic alcohols by laccase from white-rot mushroom Tricholoma giganteum AGHP: Total synthesis of taccabulin A, taccabulin D and taccabulin E. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Small molecule LATS kinase inhibitors block the Hippo signaling pathway and promote cell growth under 3D culture conditions. J Biol Chem 2022; 298:101779. [PMID: 35231442 PMCID: PMC8988011 DOI: 10.1016/j.jbc.2022.101779] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Although 3D cell culture models are considered to reflect the physiological microenvironment and exhibit high concordance with in vivo conditions, one disadvantage has been that cell proliferation is slower in 3D culture as compared to 2D culture. However, the signaling differences that lead to this slower proliferation are unclear. Here, we conducted a cell-based high-throughput screening study and identified novel small molecules that promote cell proliferation, particularly under 3D conditions. We found that one of these molecules, designated GA-017, increases the number and size of spheroids of various cell-types in both scaffold-based and scaffold-independent cultures. In addition, GA-017 also enhances the ex vivo formation of mouse intestinal organoids. Importantly, we demonstrate that GA-017 inhibits the serine/threonine protein kinases large tumor suppressor kinase 1/2, which phosphorylate Yes-associated protein and transcriptional coactivator with PDZ-binding motif , key effectors of the growth- and proliferation-regulating Hippo signaling pathway. We showed that GA-017 facilitates the growth of spheroids and organoids by stabilizing and translocating Yes-associated protein and transcriptional coactivator with PDZ-binding motif into the cell nucleus. Another chemical analog of GA-017 obtained in this screening also exhibited similar activities and functions. We conclude that experiments with these small molecule large tumor suppressor kinase inhibitors will contribute to further development of efficient 3D culture systems for the ex vivo expansion of spheroids and organoids.
Collapse
|
4
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
5
|
McDonald TR, Mills LR, West MS, Rousseaux SAL. Selective Carbon–Carbon Bond Cleavage of Cyclopropanols. Chem Rev 2020; 121:3-79. [DOI: 10.1021/acs.chemrev.0c00346] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tyler R. McDonald
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - L. Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael S. West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
6
|
Sang D, Yue H, Zhao Z, Yang P, Tian J. Anchimerically Assisted Selective Cleavage of Acid-Labile Aryl Alkyl Ethers by Aluminum Triiodide and N, N-Dimethylformamide Dimethyl Acetal. J Org Chem 2020; 85:6429-6440. [PMID: 32319290 DOI: 10.1021/acs.joc.0c00290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aluminum triiodide is harnessed by N,N-dimethylformamide dimethyl acetal (DMF-DMA) for the selective cleavage of ethers via neighboring group participation. Various acid-labile functional groups, including carboxylate, allyl, tert-butyldimethylsilyl (TBS), and tert-butoxycarbonyl (Boc), suffer the conditions intact. The method offers an efficient approach to cleaving catechol monoalkyl ethers and to uncovering phenols from acetal-type protecting groups such as methoxymethyl (MOM), methoxyethoxymethyl (MEM), and tetrahydropyranyl (THP) chemoselectively.
Collapse
Affiliation(s)
- Dayong Sang
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Huaxin Yue
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.,School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Zhengdong Zhao
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Pengtao Yang
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Juan Tian
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| |
Collapse
|
7
|
Song R, Yu H, Huang H, Chen Y. Controlled One‐Pot Synthesis of Multiple Heterocyclic Scaffolds Based on an Amphiphilic Claisen‐Schmidt Reaction Intermediate. ChemistrySelect 2019. [DOI: 10.1002/slct.201904110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Song
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Hui Yu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education, School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| |
Collapse
|
8
|
Rao MLN, Ramakrishna BS. Rh-Catalyzed Decarbonylative Addition of Salicylaldehydes with Vinyl Ketones: Synthesis of Taccabulins A-E. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Maddali L. N. Rao
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Boddu S. Ramakrishna
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
9
|
Stompor M, Broda D, Bajek-Bil A. Dihydrochalcones: Methods of Acquisition and Pharmacological Properties-A First Systematic Review. Molecules 2019; 24:molecules24244468. [PMID: 31817526 PMCID: PMC6943545 DOI: 10.3390/molecules24244468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Dihydrochalcones are a class of secondary metabolites, for which demand in biological and pharmacological applications is still growing. They posses several health-endorsing properties and, therefore, are promising candidates for further research and development. However, low content of dihydrochalcones in plants along with their low solubility and bioavailability restrict the development of these compounds as clinical therapeutics. Therefore, chemomicrobial and enzymatic modifications are required to expand their application. This review aims at analyzing and summarizing the methods of obtaining dihydrochalcones and of presenting their pharmacological actions that have been described in the literature to support potential future development of this group of compounds as novel therapeutic drugs. We have also performed an evaluation of the available literature on beneficial effects of dihydrochalcones with potent antioxidant activity and multifactorial pharmacological effects, including antidiabetic, antitumor, lipometabolism regulating, antioxidant, anti-inflammatory, antibacterial, antiviral, and immunomodulatory ones. In addition, we provide useful information on their properties, sources, and usefulness in medicinal chemistry.
Collapse
Affiliation(s)
- Monika Stompor
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence:
| | - Daniel Broda
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland;
| |
Collapse
|
10
|
|
11
|
Heravi MM, Zadsirjan V, Saedi P, Momeni T. Applications of Friedel-Crafts reactions in total synthesis of natural products. RSC Adv 2018; 8:40061-40163. [PMID: 35558228 PMCID: PMC9091380 DOI: 10.1039/c8ra07325b] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/03/2018] [Indexed: 12/17/2022] Open
Abstract
Over the years, Friedel-Crafts (FC) reactions have been acknowledged as the most useful and powerful synthetic tools for the construction of a special kind of carbon-carbon bond involving an aromatic moiety. Its stoichiometric and, more recently, its catalytic procedures have extensively been studied. This reaction in recent years has frequently been used as a key step (steps) in the total synthesis of natural products and targeted complex bioactive molecules. In this review, we try to underscore the applications of intermolecular and intramolecular FC reactions in the total syntheses of natural products and complex molecules, exhibiting diverse biological properties.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Pegah Saedi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
12
|
Sum TJ, Sum TH, Galloway WR, Twigg DG, Ciardiello JJ, Spring DR. Synthesis of structurally diverse biflavonoids. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
|
14
|
Fang G, Cong X, Zanoni G, Liu Q, Bi X. Silver-Based Radical Reactions: Development and Insights. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601179] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Guichun Fang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xuefeng Cong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Giuseppe Zanoni
- Department of Chemistry; University of Pavia; Viale Taramelli 10 27100 Pavia Italy
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University, Tianjin; 300071 People's Republic of China
| |
Collapse
|
15
|
Sum TH, Sum TJ, Collins S, Galloway WRJD, Twigg DG, Hollfelder F, Spring DR. Divergent synthesis of biflavonoids yields novel inhibitors of the aggregation of amyloid β (1–42). Org Biomol Chem 2017; 15:4554-4570. [DOI: 10.1039/c7ob00804j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biflavonoids inhibit the aggregation of Aβ42, the pathological hallmark of Alzheimer's disease, with an IC50 of 16 μM.
Collapse
Affiliation(s)
- Tze Han Sum
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Tze Jing Sum
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Súil Collins
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
- Department of Biochemistry
| | | | - David G. Twigg
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | | | | |
Collapse
|
16
|
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers. Molecules 2016; 21:molecules21091230. [PMID: 27649131 PMCID: PMC6273872 DOI: 10.3390/molecules21091230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022] Open
Abstract
Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.
Collapse
|