1
|
Scott TZ, Movassaghi M. Unified, Biosynthesis-Inspired, Completely Stereocontrolled Total Synthesis of All Highest-Order [n + 1] Oligocyclotryptamine Alkaloids. J Am Chem Soc 2024; 146:23574-23581. [PMID: 39132870 PMCID: PMC11512586 DOI: 10.1021/jacs.4c07705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
We describe the unified enantioselective total synthesis of the polycyclotryptamine natural products (+)-quadrigemine H, (+)-isopsychotridine C, (+)-oleoidine, and (+)-caledonine. Inspired by our hypothesis for the biogenesis of these alkaloids via an iterative concatenative addition of homochiral cyclotryptamines to a meso-chimonanthine headcap, we leverage the modular, diazene-directed assembly of stereodefined cyclotryptamines to introduce successive C3a-C7' quaternary stereocenters on a heterodimeric meso-chimonanthine surrogate with full stereochemical control at each quaternary linkage. We developed a new strategy for iterative aryl-alkyl diazene synthesis using increasingly complex oligomeric hydrazide nucleophiles and a bifunctional cyclotryptamine bearing a C3a leaving group and a pendant C7 pronucleophile. The utility of this strategy is demonstrated by the first total synthesis of heptamer (+)-caledonine and hexamer (+)-oleoidine. Enabled by our completely stereoselective total syntheses and expanded characterization data sets, we provide the first complete stereochemical assignment of pentamer (+)-isopsychotridine C, provide evidence that it is identical to the alkaloid known as (+)-isopsychotridine B, and report that tetramer (+)-quadrigemine H is identical to the alkaloid called (+)-quadrigemine I, resolving longstanding questions about the structures of the highest-order [n + 1] oligocyclotryptamine alkaloids.
Collapse
Affiliation(s)
- Tony Z Scott
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Scott TZ, Armelin VF, Movassaghi M. Total Synthesis and Stereochemical Assignment of (-)-Psychotridine. Org Lett 2022; 24:2160-2164. [PMID: 35297255 PMCID: PMC9204752 DOI: 10.1021/acs.orglett.2c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first enantioselective total synthesis and stereochemical assignment of (-)-psychotridine. The application of our diazene-directed assembly of enantiomerically enriched cyclotryptamines afforded a highly convergent synthesis of the pentameric alkaloid, allowing its detailed structural assignment. Highlights of the synthesis include the introduction of four quaternary stereocenters with complete stereochemical control in a single step via the photoextrusion of three molecules of dinitrogen from an advanced intermediate and metal-catalyzed C-H amination reactions in challenging settings.
Collapse
|
3
|
Xu J, Li R, Xu N, Liu X, Wang F, Feng X. Enantioselective [4 + 2] Cycloaddition/Cyclization Cascade Reaction and Total Synthesis of cis-Bis(cyclotryptamine) Alkaloids. Org Lett 2021; 23:1856-1861. [PMID: 33621106 DOI: 10.1021/acs.orglett.1c00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The asymmetric catalytic synthesis of 3-cyclotryptamine substituted oxindoles through formal [4 + 2] cycloaddition/cyclization cascade is described. A wide range of cyclotryptamine derivatives were obtained in enantioenriched form under mild reaction conditions and were found to have potential anticancer activity. The strategy enables ready assembly of cyclotryptamine subunits at the C3a-C3a' positions with two quaternary stereogenic centers in cis-selectivity, leading to the concise synthesis of optically active cis-bis(hexahydropyrroloindole) and others of the cyclotryptamine alkaloid family.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Runze Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Nian Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Wei H, Chen G, Zou H, Zhou Z, Lei P, Yan J, Xie W. The catalytic asymmetric dearomatization of tryptamine for accessing meso-contiguous quaternary carbon centers of oligomeric cyclotryptamine alkaloids: a formal synthesis of hodgkinsine B. Org Chem Front 2021. [DOI: 10.1039/d1qo00393c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we disclosed a catalytic asymmetric dearomatization (CADA) of tryptamine via tandem [4 + 2] cycloaddition/cyclization with o-azaxylylene in situ generated from functionalized 3-bromooxindole promoted by chiral N,N′-dioxide/Ni(BF4)2.
Collapse
Affiliation(s)
- Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Guzhou Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Huanhuan Zou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Pan Lei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Jiahang Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
5
|
Dotson JJ, Bachman JL, Garcia-Garibay MA, Garg NK. Discovery and Total Synthesis of a Bis(cyclotryptamine) Alkaloid Bearing the Elusive Piperidinoindoline Scaffold. J Am Chem Soc 2020; 142:11685-11690. [PMID: 32520547 DOI: 10.1021/jacs.0c04760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bis(cyclotryptamine) alkaloids have been popular topics of study for many decades. Five possible scaffolds for bis(cyclotryptamine) alkaloids were originally postulated in the 1950s, but only four of these scaffolds have been observed in natural products to date. We describe synthetic access to the elusive fifth scaffold, the piperidinoindoline, through syntheses of compounds now termed "dihydropsychotriadine" and "psychotriadine". The latter of these compounds was subsequently identified in extracts of the flower Psychotria colorata. Our synthetic route features a stereospecific solid-state photodecarbonylation reaction to introduce the key vicinal quaternary stereocenters.
Collapse
Affiliation(s)
- Jordan J Dotson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - J Logan Bachman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Zhang HJ, Gu Q, You SL. Ni-Catalyzed Intermolecular Allylic Dearomatization Reaction of Tryptophols and Tryptamines. Org Lett 2019; 21:9420-9424. [DOI: 10.1021/acs.orglett.9b03633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hui-Jun Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
7
|
Carmona RC, Köster OD, Correia CRD. Chiral N,N Ligands Enabling Palladium-Catalyzed Enantioselective Intramolecular Heck-Matsuda Carbonylation Reactions by Sequential Migratory and CO Insertions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805831] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rafaela C. Carmona
- Institute of Chemistry; University of Campinas; Josué de Castro 10384-612 São Paulo Brazil
| | - Otto D. Köster
- Institute of Chemistry; University of Campinas; Josué de Castro 10384-612 São Paulo Brazil
| | | |
Collapse
|
8
|
Carmona RC, Köster OD, Correia CRD. Chiral N,N Ligands Enabling Palladium-Catalyzed Enantioselective Intramolecular Heck-Matsuda Carbonylation Reactions by Sequential Migratory and CO Insertions. Angew Chem Int Ed Engl 2018; 57:12067-12070. [DOI: 10.1002/anie.201805831] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Rafaela C. Carmona
- Institute of Chemistry; University of Campinas; Josué de Castro 10384-612 São Paulo Brazil
| | - Otto D. Köster
- Institute of Chemistry; University of Campinas; Josué de Castro 10384-612 São Paulo Brazil
| | | |
Collapse
|
9
|
Heravi MM, Mohammadkhani L. Recent applications of Stille reaction in total synthesis of natural products: An update. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Harned AM. From determination of enantiopurity to the construction of complex molecules: The Horeau principle and its application in synthesis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Thorat RG, Harned AM. Rapid, enantioselective synthesis of the C1–C13 fragment of biselyngbyolide B. Chem Commun (Camb) 2018; 54:241-243. [DOI: 10.1039/c7cc08004b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using catalytic transformations for C–C bond formation allows for a nine-step synthesis of the biselyngbyolide C1–C13 fragment.
Collapse
Affiliation(s)
- Rakesh G. Thorat
- Texas Tech University
- Department of Chemistry & Biochemistry
- Lubbock
- USA
| | - Andrew M. Harned
- Texas Tech University
- Department of Chemistry & Biochemistry
- Lubbock
- USA
| |
Collapse
|
12
|
Lindovska P, Movassaghi M. Concise Synthesis of (-)-Hodgkinsine, (-)-Calycosidine, (-)-Hodgkinsine B, (-)-Quadrigemine C, and (-)-Psycholeine via Convergent and Directed Modular Assembly of Cyclotryptamines. J Am Chem Soc 2017; 139:17590-17596. [PMID: 29058431 PMCID: PMC5733798 DOI: 10.1021/jacs.7b09929] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The enantioselective total synthesis of (-)-hodgkinsine, (-)-calycosidine, (-)-hodgkinsine B, (-)-quadrigemine C, and (-)-psycholeine through a diazene-directed assembly of cyclotryptamine fragments is described. Our synthetic strategy enables multiple and directed assembly of intact cyclotryptamine subunits for convergent synthesis of highly complex bis- and tris-diazene intermediates. Photoextrusion of dinitrogen from these intermediates enables completely stereoselective formation of all C3a-C3a' and C3a-C7' carbon-carbon bonds and all the associated quaternary stereogenic centers. In a representative example, photoextrusion of three dinitrogen molecules from an advanced intermediate in a single-step led to completely controlled introduction of four quaternary stereogenic centers and guided the assembly of four cyclotryptamine monomers en route to (-)-quadrigemine C. The synthesis of these complex diazenes was made possible through a new methodology for synthesis of aryl-alkyl diazenes using electronically attenuated hydrazine-nucleophiles for a silver-promoted addition to C3a-bromocyclotryptamines. The application of Rh- and Ir-catalyzed C-H amination reactions in complex settings were used to gain rapid access to C3a- and C7-functionalized cyclotryptamine monomers, respectively, used for diazene synthesis. This convergent and modular assembly of intact cyclotryptamines offers the first solution to access these alkaloids through completely stereoselective union of monomers at challenging linkages and the associated quaternary stereocenters as illustrated in our synthesis of five members of the oligocyclotryptamine family of alkaloids.
Collapse
Affiliation(s)
- Petra Lindovska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Jamison CR, Badillo JJ, Lipshultz JM, Comito RJ, MacMillan DWC. Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products. Nat Chem 2017; 9:1165-1169. [PMID: 29168485 PMCID: PMC9815142 DOI: 10.1038/nchem.2825] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/07/2017] [Indexed: 01/11/2023]
Abstract
In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.
Collapse
|
14
|
Loach RP, Fenton OS, Movassaghi M. Concise Total Synthesis of (+)-Asperazine, (+)-Pestalazine A, and (+)-iso-Pestalazine A. Structure Revision of (+)-Pestalazine A. J Am Chem Soc 2016; 138:1057-64. [PMID: 26726924 PMCID: PMC4908971 DOI: 10.1021/jacs.5b12392] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concise, enantioselective total syntheses of (+)-asperazine (1), (+)-iso-pestalazine A (2), and (+)-pestalazine A (3) have been achieved by the development of a late-stage C3-C8' Friedel-Crafts union of polycyclic diketopiperazines. Our modular strategy enables the union of complex polycyclic diketopiperazines in virtually their final forms, thus providing rapid and highly convergent assembly at the challenging quaternary stereocenter of these dimeric alkaloids. The significance of this carbon-carbon bond formation can be gauged by the manifold constraints that were efficiently overcome, namely the substantial steric crowding at both reactive sites, the nucleophilic addition of C8' over N1' to the C3 carbocation, and the multitude of reactivity posed by the use of complex diketopiperazine fragments in the coupling event. The success of the indoline π-nucleophile that evolved through our studies is notable given the paucity of competing reaction pathways observed in the presence of the highly reactive C3 carbocation generated. This first total synthesis of (+)-pestalazine A also allowed us to revise the molecular structure for this natural alkaloid.
Collapse
Affiliation(s)
- Richard P. Loach
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Owen S. Fenton
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|