1
|
Zhang Q, Zhang J, Qian H, Ma S. Aerobic Oxidation of PMB Ethers to Carboxylic Acids. Chemistry 2024; 30:e202401815. [PMID: 38925594 DOI: 10.1002/chem.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The first aerobic protocol of direct transformation of p-methoxybenzyl (PMB) ethers to carboxylic acids efficiently with Fe(NO3)3 ⋅ 9H2O and TEMPO as catalysts at room temperature has been developed. The reaction accommodates C-Br bond, terminal/non-terminal C-C triple bond, amide, cyano, nitro, ester, and trifluoromethyl groups. Even highly selective oxidative deprotection of different benzylic PMB ethers has been realized. The reaction has been successfully applied to the total synthesis of natural product, (R)-6-hydroxy-7,9-octadecadiynoic acid, demonstrating the practicality of the method. Based on experimental studies, a possible mechanism involving oxygen-stabilized benzylic cation has been proposed.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Jiabin Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
2
|
Borthakur I, Joshi A, Kumari S, Kundu S. Metal-Free Visible-Light Induced Oxidative Cleavage of C(sp 3 )-C, and C(sp 3 )-N Bonds of Nitriles, Alcohols, and Amines. Chemistry 2024; 30:e202303295. [PMID: 38116901 DOI: 10.1002/chem.202303295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Selective cleavage of unstrained (sp3 ) C-C/ C-N bonds under mild conditions is highly challenging due to the higher bond dissociation energy. A visible light mediated metal-free oxidative dehomologation of aryl acetonitriles, primary alcohols and diols to carboxylic acids via organophotocatalyzed C(sp3 )-CN, C(sp3 )-C(OH) bond cleavage is reported. Notably, this methodology was further extended towards selective synthesis of aldehydes via deamination of both primary as well as secondary amines. This mild protocol features wide array of substrate variation with excellent functional group tolerance, preparative-scale synthesis, and operational simplicity. Possible mechanisms for these transformations were demonstrated through a series of control experiments.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Abhisek Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| |
Collapse
|
3
|
Highly selective photocatalytic oxidation of alcohols under the application of novel metal organic frameworks (MOFs) based catalytic system. J Colloid Interface Sci 2023; 629:136-143. [DOI: 10.1016/j.jcis.2022.08.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
|
4
|
Zheng Y, Liu W, Ren Y, Guo Y, Tian X. Copper‐Catalyzed Cleavage of Aryl C(OH)−C Bonds to Access Aryl Nitriles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Zheng
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Wenbo Liu
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yun‐Lai Ren
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yinggang Guo
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xinzhe Tian
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| |
Collapse
|
5
|
Babaee S, Zarei M, Zolfigol MA. MOF-Zn-NHC as an efficient N-heterocyclic carbene catalyst for aerobic oxidation of aldehydes to their corresponding carboxylic acids via a cooperative geminal anomeric based oxidation. RSC Adv 2021; 11:36230-36236. [PMID: 35492781 PMCID: PMC9043340 DOI: 10.1039/d1ra05494e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022] Open
Abstract
As an efficient heterogenous N-heterocyclic carbene (NHC) catalyst, MOF-Zn-NHC was used in the aerobic oxidation of aryl aldehydes to their corresponding carbocyclic acids via an anomeric based oxidation. Features such as mild reaction conditions and no need for a co-catalyst or oxidative reagent can be considered as the major advantages of the presented method in this study. As an efficient heterogenous N-heterocyclic carbene (NHC) catalyst, MOF-Zn-NHC was used in the aerobic oxidation of aryl aldehydes to their corresponding carbocyclic acids via an anomeric based oxidation.![]()
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| |
Collapse
|
6
|
Pavithra T, Devi ES, Maheswari CU. Recent Advances in N‐Heterocyclic Carbene Catalyzed Oxidative Cyclization for the Formation of Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- T. Pavithra
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - E. Sankari Devi
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - C. Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| |
Collapse
|
7
|
Wu HC, Cheng MJ, Yen CH, Chen YMA, Chen YS, Chen IS, Chang HS. Chemical Constituents with GNMT-Promoter-Enhancing and NRF2-Reduction Activities from Taiwan Agarwood Excoecaria formosana. Molecules 2020; 25:E1746. [PMID: 32290267 PMCID: PMC7181199 DOI: 10.3390/molecules25071746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered to be a silent killer, and was the fourth leading global cause of cancer deaths in 2018. For now, sorafenib is the only approved drug for advanced HCC treatment. The introduction of additional chemopreventive agents and/or adjuvant therapies may be helpful for the treatment of HCC. After screening 3000 methanolic extracts from the Formosan plant extract bank, Excoecaria formosana showed glycine N-methyltransferase (GNMT)-promoter-enhancing and nuclear factor erythroid 2-related factor 2 (NRF2)-suppressing activities. Further, the investigation of the whole plant of E. formosana led to the isolation of a new steroid, 7α-hydroperoxysitosterol-3-O-β-d-(6-O-palmitoyl)glucopyranoside (1); two new coumarinolignans, excoecoumarin A (2) and excoecoumarin B (3); a new diterpene, excoeterpenol A (4); and 40 known compounds (5-44). Among them, Compounds 38 and 40-44 at a 100 μM concentration showed a 2.97 ± 0.27-, 3.17 ± 1.03-, 2.73 ± 0.23-, 2.63 ± 0.14-, 6.57 ± 0.13-, and 2.62 ± 0.05-fold increase in GNMT promoter activity, respectively. In addition, Compounds 40 and 43 could reduce NRF2 activity, a transcription factor associated with drug resistance, in Huh7 cells with relative activity of 33.1 ± 0.2% and 45.2 ± 2.5%. These results provided the basis for the utilization of Taiwan agarwood for the development of anti-HCC agents.
Collapse
Affiliation(s)
- Ho-Cheng Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan;
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Ming Arthur Chen
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Xu L, Chen Y, Shen Z, Wang Y, Li M. I2/Fe(NO3)3·9H2O-catalyzed oxidative synthesis of aryl carboxylic acids from aryl alkyl ketones and secondary benzylic alcohols. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Alanthadka A, Devi ES, Selvi AT, Nagarajan S, Sridharan V, Maheswari CU. N-Heterocyclic Carbene-Catalyzed Mannich Reaction for the Synthesis of β-Amino Ketones: N
,N
-Dimethylformamide as Carbon Source. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anitha Alanthadka
- Organic Synthesis Group, Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; Thanjavur 613401 India
| | - E. Sankari Devi
- Organic Synthesis Group, Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; Thanjavur 613401 India
| | - A. Tamil Selvi
- Department of Chemistry; Thiagarajar College; Madurai 625009 India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; Thanjavur 613401 India
| | - Vellaisamy Sridharan
- Organic Synthesis Group, Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; Thanjavur 613401 India
| | - C. Uma Maheswari
- Organic Synthesis Group, Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; Thanjavur 613401 India
| |
Collapse
|
10
|
Alanthadka A, Devi ES, Nagarajan S, Sridharan V, Suvitha A, Maheswari CU. NHC-Catalyzed Benzylic Csp³-H Bond Activation of Alkylarenes andN-Benzylamines for the Synthesis of 3H-Quinazolin-4-ones: Experimental and Theoretical Study. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anitha Alanthadka
- Organic Synthesis Group; Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; 613401 Thanjavur India
| | - E. Sankari Devi
- Organic Synthesis Group; Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; 613401 Thanjavur India
| | - Subbiah Nagarajan
- Organic Synthesis Group; Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; 613401 Thanjavur India
| | - Vellaisamy Sridharan
- Organic Synthesis Group; Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; 613401 Thanjavur India
| | - Ambigapathy Suvitha
- Computational Molecular Biophysics Laboratory; Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; 613401 Thanjavur India
| | - C. Uma Maheswari
- Organic Synthesis Group; Department of Chemistry; School of Chemical and Biotechnology; SASTRA University; 613401 Thanjavur India
| |
Collapse
|
11
|
Christmann M, Hu J, Kitamura M, Stoltz B. Tetrahedron reports on organic chemistry. Tetrahedron 2015. [DOI: 10.1016/s0040-4020(15)00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|