1
|
Aggarwal R, Hooda M, Jain N, Sanz D, Claramunt RM, Twamley B, Rozas I. An efficient, one-pot, regioselective synthesis of 2-aryl/hetaryl-4-methyl-5-acylthiazoles under solvent-free conditions. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1975119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| | - Rosa M. Claramunt
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin2, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin2, Ireland
| |
Collapse
|
2
|
Cha MJ, Abdildinova A, Gong YD. Solid-phase parallel synthesis of 1,3-thiazole library adorned with dipeptidyl chains. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Narasimhamurthy KH, Sajith AM, Joy MN, Rangappa KS. An Overview of Recent Developments in the Synthesis of Substituted Thiazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202001133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Ayyiliath M. Sajith
- Postgraduate and Research Department of ChemistryGovernment College KasaragodKannur University Kasaragod Kerala 671123 India
| | - Muthipeedika N. Joy
- Innovation Center for Chemical and Pharmaceutical TechnologiesInstitute of Chemical TechnologyUral Federal University 19 Mira Street Yekaterinburg 620002 Russia
| | | |
Collapse
|
4
|
Abstract
Traceless solid-phase synthesis represents an ultimate sophisticated synthetic strategy on insoluble supports. Compounds synthesized on solid supports can be released without a trace of the linker that was used to tether the intermediates during the synthesis. Thus, the target products are composed only of the components (atoms, functional groups) inherent to the target core structure. A wide variety of synthetic strategies have been developed to prepare products in a traceless manner, and this review is dedicated to all aspects of traceless solid-phase organic synthesis. Importantly, the synthesis does not need to be carried out on a linker designed for traceless synthesis; most of the synthetic approaches described herein were developed using standard, commercially available linkers (originally devised for solid-phase peptide synthesis). The type of structure prepared in a traceless fashion is not restricted. The individual synthetic approaches are divided into eight sections, each devoted to a different methodology for traceless synthesis. Each section consists of a brief outline of the synthetic strategy followed by a description of individual reported syntheses.
Collapse
Affiliation(s)
- Naděžda Cankařová
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic
| | - Eva Schütznerová
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic
| | - Viktor Krchňák
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic.,Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Center , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
5
|
Lee D, Lee S, Liu KH, Bae JS, Baek DJ, Lee T. Solid-Phase Synthesis of 1,3,7,8-Tetrasubstituted Xanthine Derivatives on Traceless Solid Support. ACS COMBINATORIAL SCIENCE 2016; 18:70-4. [PMID: 26616892 DOI: 10.1021/acscombsci.5b00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traceless solid-phase synthesis of 1,3,7,8-tetrasubstituted xanthine (1,3,7,8-tetrasubstituted 1H-purine-2,6(3H,7H)-dione) derivatives has been developed. The solid-phase synthetic route began on a solid supported N'-cyano-N-substituted carbamimidothioate, which was prepared from cyanamide, isothiocyanate, and Merrifield resin. After N-alkylation of carbamimidothioate resin with ethyl 2-bromoacetate, an imidazole ring is introduced by Thorpe-Ziegler-type cyclization. The resulting imidazole resin is converted to 1,3,7-trisubstituted xanthine resin using sequential reactions, such as Lewis acid-catalyzed urea formation, pyrimidine ring cyclization, and N-alkylation. After oxidation of sulfides to sulfones, traceless cleavage with amine or thiol nucleophiles afforded the desired 1,3,7,8-tetrasubstituted xanthines in good purities and overall yields (eight-steps; 36 examples). This efficient solid-phase synthesis enables the incorporation of four diversity points into the preparation of the 1,3,7,8-tetrasubstituted xanthines.
Collapse
Affiliation(s)
- Doohyun Lee
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Seungyeon Lee
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Kwang-Hyeon Liu
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Jong-Sup Bae
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Dong Jae Baek
- College
of Pharmacy, Natural Medicine Research Institute, Mokpo National University, 1666 Youngsan-ro, Muan-gun, Jeonnam 534-729, Korea
| | - Taeho Lee
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| |
Collapse
|
6
|
Efficient Syntheses of 1,2,3-Triazoloamide Derivatives Using Solid- and Solution-Phase Synthetic Approaches. Molecules 2015; 20:19984-20013. [PMID: 26556332 PMCID: PMC6332172 DOI: 10.3390/molecules201119673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/17/2022] Open
Abstract
Efficient synthetic routes for the preparation of secondary and tertiary 1,2,3-triazoloamide derivatives were developed. A secondary α-1,2,3-triazoloamide library was constructed and expanded by a previously developed solid-phase synthetic route and a tertiary 1,2,3-triazoloamide library was constructed by a parallel solution-phase synthetic route. The synthetic routes rely on amide formation with secondary amines and chloro-acid chlorides; SN2 reaction with sodium azide; and the selective [3 + 2] Hüisgen cycloaddition with appropriate terminal alkynes. The target secondary and tertiary 1,2,3-triazoloamide derivatives were obtained with three-diversity points in excellent overall yields and purities using the reported solid- and solution-phase synthetic routes, respectively.
Collapse
|