1
|
Stereoselective Synthesis of 1-Substituted Homotropanones, including Natural Alkaloid (-)-Adaline. Molecules 2023; 28:molecules28052414. [PMID: 36903657 PMCID: PMC10005508 DOI: 10.3390/molecules28052414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The stereocontrolled synthesis of 1-substituted homotropanones, using chiral N-tert-butanesulfinyl imines as reaction intermediates, is described. The reaction of organolithium and Grignard reagents with hydroxy Weinreb amides, chemoselective N-tert-butanesulfinyl aldimine formation from keto aldehydes, decarboxylative Mannich reaction with β-keto acids of these aldimines, and organocatalyzed L-proline intramolecular Mannich cyclization are key steps of this methodology. The utility of the method was demonstrated with a synthesis of the natural product (-)-adaline, and its enantiomer, (+)-adaline.
Collapse
|
2
|
Shaw P, Hassell-Hart SJ, Douglas GE, Malcolm AG, Kennedy AR, White GV, Paterson LC, Kerr WJ. Oxygenated Cyclopentenones via the Pauson-Khand Reaction of Silyl Enol Ether Substrates. Org Lett 2022; 24:2750-2755. [PMID: 35377671 PMCID: PMC9016766 DOI: 10.1021/acs.orglett.2c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
![]()
We report here the
application of silyl enol ether moieties as
efficient alkene coupling partners within cobalt-mediated intramolecular
Pauson–Khand reactions. This cyclization strategy delivers
synthetically valuable oxygenated cyclopentenone products in yields
of ≤93% from both ketone- and aldehyde-derived silyl enol ethers,
incorporates both terminal and internal alkyne partners, and delivers
a variety of decorated systems, including more complex tricyclic structures.
Facile removal of the silyl protecting group reveals oxygenated sites
for potential further elaboration.
Collapse
Affiliation(s)
- Paul Shaw
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Storm J Hassell-Hart
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K.,Medicines Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, England, U.K
| | - Gayle E Douglas
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Andrew G Malcolm
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Gemma V White
- Medicines Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, England, U.K
| | - Laura C Paterson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - William J Kerr
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| |
Collapse
|
3
|
Dilmaç AM, Wezeman T, Bär RM, Bräse S. Occurrence, synthesis and applications of natural and designed [3.3.3]propellanes. Nat Prod Rep 2021; 37:224-245. [PMID: 31140489 DOI: 10.1039/c8np00086g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1978 to 2019 The synthetically challenging [3.3.3]propellane core has caught a lot of attention over the last 50 years. This comprehensive review details all synthetic strategies reported in the period 1978-2019 to facilitate the synthesis of carbocyclic [3.3.3]propellanes. The described strategies span from acid-catalyzed rearrangements and photo-mediated cycloadditions of ketones, heteropropellanes and dispiroundecanes to thermal rearrangements of acetylenes and alkenes. Other approaches, such as radical reactions with halogenated alkenes, domino cyclizations, the smart use of epoxide-carbonyl rearrangements and intramolecular palladium-catalyzed ring contractions are discussed as well. A special section is dedicated to triptindanes, a subclass of [3.3.3]propellanes which are of interest to material sciences.
Collapse
Affiliation(s)
- Alicia M Dilmaç
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Tim Wezeman
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Robin M Bär
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. and Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Cochrane AR, Kerr WJ, Paterson LC, Pearson CM, Shaw P. Advances in the cobalt-catalysed Pauson-Khand reaction: Development of a sulfide-promoted, microwave-assisted protocol. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Kerr WJ, McLaughlin M, Paterson LC, Pearson CM. Total synthesis 2-epi-α-cedren-3-one via a cobalt-catalysed Pauson-Khand reaction. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Zhurakovskyi O, Ellis SR, Thompson AL, Robertson J. Access to a Guanacastepene and Cortistatin-Related Skeleton via Ethynyl Lactone Ireland–Claisen Rearrangement and Transannular (4 + 3)-Cycloaddition of an Azatrimethylenemethane Diyl. Org Lett 2017; 19:2174-2177. [DOI: 10.1021/acs.orglett.7b00834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oleksandr Zhurakovskyi
- Department of Chemistry, University of Oxford,
Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Sam R. Ellis
- Department of Chemistry, University of Oxford,
Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Amber L. Thompson
- Department of Chemistry, University of Oxford,
Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Jeremy Robertson
- Department of Chemistry, University of Oxford,
Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|