1
|
Lepechkin-Zilbermintz V, Bareket D, Gonnord V, Steffen A, Morice C, Michaut M, Munder A, Korshin EE, Contreras JM, Cerasi E, Sasson S, Gruzman A. Moderately lipophilic 2-(Het)aryl-6-dithioacetals, 2-phenyl-1,4-benzodioxane-6-dithioacetals and 2-phenylbenzofuran-5-dithioacetals: Synthesis and primary evaluation as potential antidiabetic AMPK-activators. Bioorg Med Chem 2023; 87:117303. [PMID: 37167713 DOI: 10.1016/j.bmc.2023.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Since the 1950's, AMP-kinase (AMPK) has been used as a promising target for the development of antidiabetic drugs against Type 2 diabetes mellitus (T2D). Indeed, the canonical antidiabetic drug metformin recruits, at least partially, AMPK activation for its therapeutic effect. Herein we present design and synthesis of 20 novel relatively polar cyclic and acyclic dithioacetals of 2-(Het)arylchroman-6-carbaldehydes, 2-phenyl-1,4-benzodioxane-6-carbaldehyde, and 2-phenylbenzofuran-5-carbaldehyde, which were developed as potential AMPK activators. Three of the synthesized dithioacetals demonstrated significant enhancement (≥70%) of glucose uptake in rat L6 myotubes. Noteworthy, one of the dithioacetals, namely 4-(6-(1,3-dithian-2-yl)chroman-2-yl)pyridine, exhibited high potency comparing to other molecules. It increased the rate of glucose uptake in rat L6 myotubes and augmented insulin secretion from rat INS-1E cells in pharmacological relevant concentrations (up to 2 μM). Both effects were mediated by activation of AMPK. In addition, the compound showed excellent pharmacokinetic profile in healthy mice, including maximal oral bioavailability. Such bifunctionality (increased glucose uptake and insulin secretion) can be used as a starting point for the development of a novel class of antidiabetic drugs with dual activity that is relevant for T2D treatment.
Collapse
Affiliation(s)
| | - Daniel Bareket
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Virginie Gonnord
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Alexandre Steffen
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Christophe Morice
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Mathieu Michaut
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Anna Munder
- RECIPHARM Israel Ltd., 9 Hamzamara Str., 7404709, Nes Ziona, Israel
| | - Edward E Korshin
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | | | - Erol Cerasi
- The Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Soto M, Pérez‐Ramos P, Soengas RG, Rodríguez‐Solla H. Substrate‐Controlled Hydrogenation of Flavanones: Selective Synthesis of 2′‐Hydroxy‐1,3‐Diarylpropanes and Flavans. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Kumar A, Ta S, Nettem C, Tanski JM, Rajaraman G, Ghosh P. One pot tandem dehydrogenative cross-coupling of primary and secondary alcohols by ruthenium amido-functionalized 1,2,4-triazole derived N-heterocyclic carbene complexes. RSC Adv 2022; 12:28961-28984. [PMID: 36320780 PMCID: PMC9557752 DOI: 10.1039/d2ra05531g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
One-pot tandem dehydrogenative cross-coupling of primary and secondary alcohols was catalyzed by three ruthenium complexes [1-(R)-4-N-(furan-2-ylmethyl)acetamido-1,2,4-triazol-5-ylidene]Ru(p-cymene)Cl [R = Et (1b), i-Pr (2b), Bn (3b)], of amido-functionalized 1,2,4-triazole derived N-heterocyclic carbene (NHC) ligands. Density Functional Theory (DFT) calculations were employed for the ruthenium (1b) precatalyst to understand this reaction mechanism completely, and the mechanisms adapted are divided categorically into three steps (i) nucleophilic substitution of chloride ions by alcohols, (ii) dehydrogenation of primary and secondary alcohols, and (iii) olefin and ketone hydrogenation. Our mechanistic study reveals that the formation of a deprotonated Ru-alcoholate (A) or (E) intermediate is favorable compared to the protonated form (A') or (E') from (1b) by associative nucleophilic substitution. Though an ionic pathway that proceeds through (A') or (E'), has less barriers in the dehydrogenation and olefin/ketone hydrogenation steps than that of the neutral pathway, proceeding through (A) or (E), a steep energy barrier was observed in the first nucleophilic substitution step, prohibiting the reaction to proceed via the intermediate (A') or (E'). Thus, our thorough mechanistic study reveals that the reaction proceeds via deprotonated Ru-alcoholate (A) or (E) species. Furthermore, the 1,4 addition of an α,β-unsaturated carbonyl compound is kinetically and thermodynamically favorable over the 1,2 addition, and the experiments support these observations. As a testimony towards practical application in synthesizing bio-active flavonoid based natural products, five different flavan derivatives (16-20), were synthesized by the dehydrogenative coupling reaction using the neutral ruthenium (1-3)b complexes.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400 076 India +91 22 2572 3480
| | - Sabyasachi Ta
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400 076 India +91 22 2572 3480
| | - Chandrasekhar Nettem
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400 076 India +91 22 2572 3480
| | - Joseph M Tanski
- Department of Chemistry, Vassar College 124 Raymond Avenue Poughkeepsie NY 12604 USA
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400 076 India +91 22 2572 3480
| | - Prasenjit Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400 076 India +91 22 2572 3480
| |
Collapse
|
4
|
Chinnabattigalla S, Dakoju RK, Gedu S. Recent advances on the synthesis of flavans, isoflavans, and neoflavans. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Ravi Kishore Dakoju
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Satyanarayana Gedu
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy Telangana India
| |
Collapse
|
5
|
Biotransformation of Hydroxychalcones as a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria. Catalysts 2020. [DOI: 10.3390/catal10101167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was the evaluation of the biotransformation capacity of hydroxychalcones—2-hydroxy-4′-methylchalcone (1) and 4-hydroxy-4′-methylchalcone (4) using two strains of aerobic bacteria. The microbial reduction of the α,β-unsaturated bond of 2-hydroxy-4′-methylchalcone (1) in Gordonia sp. DSM 44456 and Rhodococcus sp. DSM 364 cultures resulted in isolation the 2-hydroxy-4′-methyldihydrochalcone (2) as a main product with yields of up to 35%. Additionally, both bacterial strains transformed compound 1 to the second, unexpected product of reduction and simultaneous hydroxylation at C-4 position—2,4-dihydroxy-4′-methyldihydrochalcone (3) (isolated yields 12.7–16.4%). During biotransformation of 4-hydroxy-4′-methylchalcone (4) we observed the formation of three products: reduction of C=C bond—4-hydroxy-4′-methyldihydrochalcone (5), reduction of C=C bond and carbonyl group—3-(4-hydroxyphenyl)-1-(4-methylphenyl)propan-1-ol (6) and also unpredictable 3-(4-hydroxyphenyl)-1,5-di-(4-methylphenyl)pentane-1,5-dione (7). As far as our knowledge is concerned, compounds 3, 6 and 7 have never been described in the scientific literature.
Collapse
|
6
|
Tanaka K, Kishimoto M, Asada Y, Tanaka Y, Hoshino Y, Honda K. Access to Electron-Deficient 2,2-Disubstituted Chromanes: A Highly Regioselective One-Pot Synthesis via an Inverse-Electron-Demand [4 + 2] Cycloaddition of ortho-Quinone Methides. J Org Chem 2019; 84:13858-13870. [PMID: 31580068 DOI: 10.1021/acs.joc.9b02036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the one-pot synthesis of 2,2-disubstituted chromanes with electron-withdrawing substituents. This reaction provides a simple yet efficient route to a wide range of electron-deficient chromanes in high yield and excellent regioselectivity. The reaction of salicylaldehyde with 1,1-disubstituted ethylenes smoothly furnishes these electron-deficient chromanes, which can be further transformed into functionalized chromanes or chromene. For example, BW683C was effectively synthesized from 5-chlorosalicylaldehyde with 4-chlorostyrene in two steps in excellent yield. The present reaction thus provides versatile access to functionalized electron-deficient chromanes and chromenes and therefore constitutes a promising tool for the synthesis of biologically and photochemically active molecules.
Collapse
Affiliation(s)
- Kenta Tanaka
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Mami Kishimoto
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yosuke Asada
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yuta Tanaka
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yujiro Hoshino
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Kiyoshi Honda
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| |
Collapse
|
7
|
Jia W, Xi Q, Liu T, Yang M, Chen Y, Yin D, Wang X. One-Pot Synthesis of O-Heterocycles or Aryl Ketones Using an InCl3/Et3SiH System by Switching the Solvent. J Org Chem 2019; 84:5141-5149. [DOI: 10.1021/acs.joc.9b00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenqiang Jia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiumu Xi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Minjian Yang
- Department of Medicinal Chemistry, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yonghui Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Medicinal Chemistry, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaojian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Medicinal Chemistry, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Rana N, Niharika P, Kishore DR, Satyanarayana G. One-Pot Heck and Reduction: Application towards Efficient Synthesis of Flavans Promoted by Lewis Acid. ChemistrySelect 2017. [DOI: 10.1002/slct.201702395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nishu Rana
- Department of Chemistry; Indian Institute of Technology, Hyderabad; Kandi - 502 285, Sangareddy Telangana INDIA
| | - Pedireddi Niharika
- Department of Chemistry; Indian Institute of Technology, Hyderabad; Kandi - 502 285, Sangareddy Telangana INDIA
| | - Dakoju Ravi Kishore
- Department of Chemistry; Indian Institute of Technology, Hyderabad; Kandi - 502 285, Sangareddy Telangana INDIA
| | - Gedu Satyanarayana
- Department of Chemistry; Indian Institute of Technology, Hyderabad; Kandi - 502 285, Sangareddy Telangana INDIA
| |
Collapse
|
9
|
Shee S, Paul B, Panja D, Roy BC, Chakrabarti K, Ganguli K, Das A, Das GK, Kundu S. Tandem Cross Coupling Reaction of Alcohols for Sustainable Synthesis of β-Alkylated Secondary Alcohols and Flavan Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700722] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sujan Shee
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Bhaskar Paul
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Dibyajyoti Panja
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Bivas Chandra Roy
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Kaushik Chakrabarti
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Kasturi Ganguli
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Ayan Das
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Gourab Kanti Das
- Department of Chemistry; Visva Bharati University; Santiniketan, West Bengal 731235 India
| | - Sabuj Kundu
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| |
Collapse
|