1
|
Brennan PJ, Saunders RE, Spanou M, Serafini M, Sun L, Heger GP, Konopacka A, Beveridge RD, Gordon L, Bunally SB, Saudemont A, Benowitz AB, Martinez-Fleites C, Queisser MA, An H, Deane CM, Hann MM, Brayshaw LL, Conway SJ. Orthogonal IMiD-Degron Pairs Induce Selective Protein Degradation in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585309. [PMID: 38559242 PMCID: PMC10979945 DOI: 10.1101/2024.03.15.585309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.
Collapse
Affiliation(s)
- Patrick J. Brennan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
- Department of Chemistry & Biochemistry, University of California, Los Angeles; Los Angeles, USA
| | | | | | - Marta Serafini
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
| | - Liang Sun
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | | | | | - Ryan D. Beveridge
- Virus Screening Facility, Weatherall Institute of Molecular Medicine, University of Oxford; Oxford, UK
| | | | | | | | | | | | | | - Heeseon An
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | | | | | | | - Stuart J. Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
- Department of Chemistry & Biochemistry, University of California, Los Angeles; Los Angeles, USA
| |
Collapse
|
2
|
Fu D, Wang X, Liu B. Old drug, new use: The thalidomide-based fluorescent probe for hydrazine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123808. [PMID: 38154305 DOI: 10.1016/j.saa.2023.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Thalidomide, a widely used ligand for cereblon (CRBN), has been gaining attention for its targeted protein degradation. In this study, we aimed to improve the optical and biocompatible features of hydrazine fluorescent probes by a novel probe called TH-1, based on the thalidomide moiety. Our results demonstrate that TH-1 exhibits remarkable properties including significant colorimetric changes, a fast response time, excellent selectivity, and high sensitivity as a hydrazine fluorescent probe. The mechanism by which TH-1 senses hydrazine has been convincingly verified. Notably, we have successfully applied TH-1 for bioimaging of hydrazine in living A549 cells, highlighting its practical significance. Moreover, the utilization of thalidomide, a clinically approved drug, as a fluorescent skeleton has expanded the repertoire of fluorescent skeleton libraries, paving the way for further on fluorescent probes.
Collapse
Affiliation(s)
- Dingqiang Fu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xianding Wang
- School of Chemistry and Environmental Engineering, Hubei Minzu Univrsity, Enshi 445000, Hubei, China
| | - Bo Liu
- School of Chemistry and Environmental Engineering, Hubei Minzu Univrsity, Enshi 445000, Hubei, China; Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, Hubei, China.
| |
Collapse
|
3
|
Brownsey DK, Gafuik CJ, Kim DS, O'Sullivan L, Gorobets E, Krukowski S, Turk M, Jenne CN, Mahoney DJ, Derksen DJ. Utilising the intrinsic fluorescence of pomalidomide for imaging applications. Chem Commun (Camb) 2023; 59:14532-14535. [PMID: 38019727 DOI: 10.1039/d3cc04314b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Optimisation of protein degraders requires balancing multiple factors including potency, cell permeability and solubility. Here we show that the fluorescence of pomalidomide can be used in high-throughput screening assays to rapidly assess cellular penetration of degrader candidates. In addition, this technique can be paired with endocytosis inhibitors to gain insight into potential mechanisms of candidates entering a target cell. A model library of pomalidomide conjugates was synthesised and evaluated using high-throughput fluorescence microscopy. This technique based on intrinsic fluorescence can be used to guide rational design of pomalidomide conjugates without the need for additional labels or tags.
Collapse
Affiliation(s)
- Duncan K Brownsey
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Christopher J Gafuik
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dae-Sun Kim
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Leonie O'Sullivan
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Evgueni Gorobets
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Samuel Krukowski
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Madison Turk
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Darren J Derksen
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
- Alberta Children's Health Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Nayek U, Basheer Ahamed SI, Mansoor Hussain UH, Unnikrishnan MK, Abdul Salam AA. Computational investigations of indanedione and indanone derivatives in drug discovery: Indanone derivatives inhibits cereblon, an E3 ubiquitin ligase component. Comput Biol Chem 2022; 101:107776. [PMID: 36252444 DOI: 10.1016/j.compbiolchem.2022.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cereblon, an extensively studied multifunctional protein, is a Cullin 4-RING E3 ubiquitin ligase complex component. Cereblon is a well-known target of thalidomide and its derivatives. Cereblon is involved in multiple myeloma cell apoptosis. When ligands such as thalidomide and lenalidomide bind to cereblon, it recognizes various neosubstrates based on the ligand shape and properties. We have identified novel CRBN inhibitors, namely DHFO and its analogs, with structural features that are slightly different from thalidomide but stronger cereblon-binding affinity. We selected indanedione and indanone derivatives from the literature to understand and compare their cereblon-mediated substrate recognition potential. METHODS Computational investigations of possible CRBN inhibitors were investigated by molecular docking with Autodock Vina and DockThor programs. The properties of the compounds' ADME/T and drug-likeness were investigated. A molecular dynamics study was carried out for four selected molecules, and the molecular interactions were analyzed using PCA-based FEL methods. The binding affinity was calculated using the MM/PBSA method. RESULTS We conducted computational investigations on 68 indanedione and indanone derivatives binding with cereblon. Ten molecules showed better CRBN binding affinity than thalidomide. We studied the drug-likeness properties of the selected ten molecules, and four of the most promising molecules (DHFO, THOH, DIMS, and DTIN) were chosen for molecular dynamics studies. The MM/PBSA calculations showed that the DHFO, already shown to be a 5-LOX/COX2 inhibitor, has the highest binding affinity of - 163.16 kJ/mol with cereblon. CONCLUSION The selected CRBN inhibitor DHFO has demonstrated the highest binding affinity with cereblon protein compared to other molecules. Thalidomide and its derivatives have a new substitute in the form of DHFO, which produces an interaction hotspot on the surface of the cereblon. Ease of chemical synthesis, low toxicity, versatile therapeutic options, and pleiotropism of DHFO analogs provide an opportunity for exploring clinical alternatives with versatile therapeutic potential for a new category of indanedione molecules as novel modulators of E3 ubiquitin ligases.
Collapse
|