1
|
Synthesis of Alkyne-Substituted Dihydropyrrolones as Bacterial Quorum-Sensing Inhibitors of Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11020151. [PMID: 35203755 PMCID: PMC8868272 DOI: 10.3390/antibiotics11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
The Quorum-sensing system in Pseudomonas aeruginosa is responsible for the pathogenicity and the production of virulence factors and biofilm formation. Dihydropyrrolones were previously found to act as inhibitors of QS-dependent bacterial phenotypes. In this study, a range of dihydropyrrolone (DHP) analogues was synthesized via the lactone-lactam conversion of lactone intermediates followed by the formation of novel acetylene analogues of dihydropyrrolones from brominated dihydropyrrolones via Sonogashira coupling reactions in moderate to high yields. Upon biological testing, the most potent compounds, 39–40 and 44, showed higher bacterial quorum-sensing inhibitory (QSI) activity against P. aeruginosa reporter strain at 62.5 µM. Structure–activity relationship studies revealed that di-alkynyl substituent at the exocyclic position of DHPs possessed higher QSI activities than those of mono-alkynyl DHPs. Moreover, a hexyl-substituent at C3 of DHPs was beneficial to QSI activity while a phenyl substituent at C4 of DHPs was detrimental to QSI activity of analogues.
Collapse
|
2
|
Liu Z, Zhang P, Qin Y, Zhang N, Teng Y, Venter H, Ma S. Design and synthesis of aryl-substituted pyrrolidone derivatives as quorum sensing inhibitors. Bioorg Chem 2020; 105:104376. [PMID: 33099165 DOI: 10.1016/j.bioorg.2020.104376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 09/04/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Quorum sensing, a common cell-to-cell communication system, is considered to have promising application in antibacterial therapy since they are expected to induce lower bacterial resistance than conventional antibiotics. However, most of present quorum sensing inhibitors have potent cell toxicity, which limits their application. In this study we evaluated the diverse quorum sensing inhibition activities of different biaromatic furanones and brominated pyrrolones. On this basis, we further designed and synthesized a new series of aryl-substituted pyrrolones 12a-12f. In the quorum sensing inhibition assay, compound 12a showed improved characteristics and low toxicity against human hepatocellular carcinoma cell. In particular, it can inhibit the pyocyanin production and protease activity of Pseudomonas aeruginosa by 80.6 and 78.5%, respectively. Besides, in this series, some compounds exerted moderate biofilm inhibition activity. To sum up, all the findings indicate that aryl-substituted pyrrolidone derivatives are worth further investigation as quorum sensing inhibitors.
Collapse
Affiliation(s)
- Zhiyang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Nan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, SA 5000, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China.
| |
Collapse
|
3
|
Yuan C, Zhong S, Li X, Wang Y, Xun MM, Bai Y, Zhu K. Total synthesis, structural revision and biological evaluation of γ-elemene-type sesquiterpenes. Org Biomol Chem 2019; 16:7843-7850. [PMID: 30303229 DOI: 10.1039/c8ob02005a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total synthesis and absolute configuration confirmation of γ-elemene-type sesquiterpenes, which possess vast potential for biological activities, was investigated based on a convergent synthetic strategy. A key intermediate with all functional groups of this family of natural products was accessed by an intermolecular aldol reaction and then an acetylation of a known ketone (12) derived from commercially available verbenone. The versatile intermediate can be easily transformed into structurally different γ-elemene-type sesquiterpenes based on control of base-promoted cyclization manipulation in different solvents. The utility of this robust approach is illustrated by the first syntheses of elema-1,3,7(11),8-tetraen-8,12-lactam (4') and 8β-methoxy-isogermafurenolide (6a), as well as the syntheses of elem-1,3,7,8-tetraen-8,12-olide (3) and hydroxyisogermafurenolide (5) in only 6 or 7 steps. In addition, the structure of the reported 5βH-elem-1,3,7,8-tetraen-8,12-olide (1) was revised as elem-1,3,7,8-tetraen-8,12-olide (3) by comparison of their identified datum, and the absolute configuration of elema-1,3,7(11),8-tetraen-8,12-lactam was confirmed as 4'. Furthermore, the inhibitory effect of all synthesized natural compounds and their natural analogues on cancer cell proliferation was evaluated. Among them compounds 3, 4 and 4' were found to possess potent inhibitory activity against Kasumi-1 and Pfeiffer. Meanwhile, preliminary structure-activity relationships for these compounds are discussed.
Collapse
Affiliation(s)
- Changchun Yuan
- National Demonstration Center for Experimental Chemical Engineering Comprehensive Education, School of Chemical Engineering and Technology, North University of China, Taiyuan 030000, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Schulze D, Traber J, Ritter M, Görls H, Pohnert G, Westerhausen M. Total syntheses of the bilirubin oxidation end product Z-BOX C and its isomeric form Z-BOX D. Org Biomol Chem 2019; 17:6489-6496. [PMID: 31206115 DOI: 10.1039/c9ob01117j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative degradation products of bilirubin (BOXes) are biologically highly active and certain BOXes cause long-lasting narrowing of cerebral blood vessels presumably with a significant role in subarachnoid hemorrhage. Due to the fact that mode of action as well as fate of these BOXes is widely unknown, larger amounts of these bilirubin degradation end products are required. The total synthesis of colorless (Z)-3-(5-(2-amino-2-oxoethylidene)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)propanoic acid (BOX C) succeeds via a seven-step procedure with a total yield of 20%. Its isomeric form (Z)-3-(2-(2-amino-2-oxoethylidene)-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-3-yl)propanoic acid (BOX D) can be prepared via a five-step protocol with a yield of 30%. NMR and crystallographic studies reveal that charge delocalization within the conjugated π-systems of BOXes C and D is negligible. Exposure of solutions of Z-BOX C and Z-BOX D to bright sunlight leads to Z/E-isomerization and mixtures of the respective E/Z-BOXes C and D.
Collapse
Affiliation(s)
- Daniel Schulze
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Juliane Traber
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Marcel Ritter
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| |
Collapse
|
5
|
Biswas NN, Iskander GM, Mielczarek M, Yu TT, Black DS, Kumar N. Alkyne-Substituted Fimbrolide Analogues as Novel Bacterial Quorum-Sensing Inhibitors. Aust J Chem 2018. [DOI: 10.1071/ch18194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gram-negative bacteria such as Pseudomonas aeruginosa use furanosyl diesters as autoinducers for quorum sensing (QS), a major regulatory and cell-to-cell communication system for social adaptation, virulence factor production, biofilm formation, and antibiotic resistance. A range of natural and synthetic brominated furanones, i.e. fimbrolide derivatives, have been found to act as inhibitors of QS-dependent bacterial phenotypes, complementing the bactericidal ability of traditional antibiotics. In this work, several novel acetylene analogues of fimbrolides were synthesised in moderate to high yields via Sonogashira coupling reactions of brominated furanones 4-bromo-5-(bromomethylene)furan-2(5H)-one 4 and 5-(dibromomethylene)-3-ethylfuran-2(5H)-one 5. The Sonogashira reaction of acetylenes on 4-bromo-5-(bromomethylene)furan-2(5H)-one 4 was favoured at the C5 methylene bromide over the C4 bromide substituent. On biological testing, the most potent compounds 13 and 14 showed 82 and 98 % bacterial quorum-sensing inhibitory (QSI) activity against Pseudomonas aeruginosa reporter strain respectively.
Collapse
|
6
|
Nizalapur S, Kimyon O, Yee E, Bhadbhade MM, Manefield M, Willcox M, Black DS, Kumar N. Synthesis and biological evaluation of novel acyclic and cyclic glyoxamide based derivatives as bacterial quorum sensing and biofilm inhibitors. Org Biomol Chem 2017; 15:5743-5755. [PMID: 28654117 DOI: 10.1039/c7ob01011g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria regulate the expression of various virulence factors and processes such as biofilm formation through a chemically-mediated communication mechanism called quorum sensing. Bacterial biofilms contribute to antimicrobial resistance as they can protect bacteria embedded in their matrix from the effects of antibiotics. Thus, developing novel quorum sensing inhibitors, which can inhibit biofilm formation, is a viable strategy to combat antimicrobial resistance. We report herein the synthesis of novel acyclic and cyclic glyoxamide derivatives via ring-opening reactions of N-acylisatins. These compounds were evaluated for their quorum sensing inhibition activity against P. aeruginosa MH602 and E. coli MT102. Compounds 20, 21 and 30 displayed the greatest quorum sensing inhibition activity against P. aeruginosa MH602, with 71.5%, 71.5%, and 74% inhibition, respectively, at 250 μM. Compounds 18, 20 and 21 exhibited the greatest QSI activity against E. coli MT102, with 71.5%, 72.1% and 73.5% quorum sensing inhibition activity, respectively. In addition, the biofilm inhibition activity was also investigated against P. aeruginosa and E. coli at 250 μM. The glyoxamide compounds 16, 18 and 19 exhibited 71.2%, 66.9%, and 66.5% inhibition of P. aeruginosa biofilms, respectively; whereas compounds 12, 20, and 22 showed the greatest inhibitory activity against E. coli biofilms with 87.9%, 90.8% and 89.5%, respectively. Finally, the determination of the in vitro toxicity against human MRC-5 lung fibroblast cells revealed that these novel glyoxamide compounds are non-toxic to human cells.
Collapse
Affiliation(s)
| | - Onder Kimyon
- School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Eugene Yee
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - Mohan M Bhadbhade
- Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, Division of Research, UNSW Australia, NSW 2052, Australia
| | - Mike Manefield
- School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Australia, Sydney, NSW 2052, Australia
| | | | - Naresh Kumar
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Biswas NN, Yu TT, Kimyon Ö, Nizalapur S, Gardner CR, Manefield M, Griffith R, Black DS, Kumar N. Synthesis of antimicrobial glucosamides as bacterial quorum sensing mechanism inhibitors. Bioorg Med Chem 2017; 25:1183-1194. [DOI: 10.1016/j.bmc.2016.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 10/25/2022]
|
8
|
Ma Y, Zheng X, Gao H, Wan C, Rao G, Mao Z. Design, Synthesis, and Biological Evaluation of Novel Benzofuran Derivatives Bearing N-Aryl Piperazine Moiety. Molecules 2016; 21:molecules21121684. [PMID: 27941680 PMCID: PMC6274084 DOI: 10.3390/molecules21121684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/27/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
A series of novel hybrid compounds between benzofuran and N-aryl piperazine have been synthesized and screened in vitro for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages and for anticancer activity against three human tumor cell lines. The results demonstrated that derivative 16 not only had inhibitory effect on the generation of NO (IC50 = 5.28 μM), but also showed satisfactory and selective cytotoxic activity against human lung cancer line (A549) and gastric cancer cell (SGC7901) (IC50 = 0.12 μM and 2.75 μM, respectively), which was identified as the most potent anti-inflammatory and anti-tumor agent in this study.
Collapse
Affiliation(s)
- Yulu Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Xi Zheng
- Central Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, China.
| | - Hui Gao
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Chunping Wan
- Central Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, China.
| | - Gaoxiong Rao
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Zewei Mao
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| |
Collapse
|