1
|
Diab HM, Abdelmoniem AM, Shaaban MR, Abdelhamid IA, Elwahy AHM. An overview on synthetic strategies for the construction of star-shaped molecules. RSC Adv 2019; 9:16606-16682. [PMID: 35516393 PMCID: PMC9064441 DOI: 10.1039/c9ra02749a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
Strategies for the synthesis of star-shaped molecules have been in high demand in the last decades due to the importance of those compounds in various fields. The distinctly different properties of these compounds compared to their linear analogues make them versatile building blocks for the formation of mesophases of interesting mesomorphic and photophysical properties. Moreover, the applications of star-shaped molecules as building units for dendrimers as well as in supramolecular host-guest chemistry have also been recently studied. The star-shaped molecules mentioned in this review are classified according to the central core as well as the type of side arms. The properties and applications of these compounds are described in the appropriate contexts. This report summarizes the recent advances in this area.
Collapse
Affiliation(s)
- Hadeer M Diab
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| | - Amr M Abdelmoniem
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| | - Mohamed R Shaaban
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| | | | - Ahmed H M Elwahy
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| |
Collapse
|
2
|
Nemmara VV, Subramanian V, Muth A, Mondal S, Salinger AJ, Maurais AJ, Tilvawala R, Weerapana E, Thompson PR. The Development of Benzimidazole-Based Clickable Probes for the Efficient Labeling of Cellular Protein Arginine Deiminases (PADs). ACS Chem Biol 2018; 13:712-722. [PMID: 29341591 DOI: 10.1021/acschembio.7b00957] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Citrullination is the post-translational hydrolysis of peptidyl-arginines to form peptidyl-citrulline, a reaction that is catalyzed by the protein arginine deiminases (PADs), a family of calcium-regulated enzymes. Aberrantly increased protein citrullination is associated with a slew of autoimmune diseases (e.g., rheumatoid arthritis (RA), multiple sclerosis, lupus, and ulcerative colitis) and certain cancers. Given the clear link between increased PAD activity and human disease, the PADs are therapeutically relevant targets. Herein, we report the development of next generation cell permeable and "clickable" probes (BB-Cl-Yne and BB-F-Yne) for covalent labeling of the PADs both in vitro and in cell-based systems. Using advanced chemoproteomic technologies, we also report the off targets of both BB-Cl-Yne and BB-F-Yne. The probes are highly specific for the PADs, with relatively few off targets, especially BB-F-Yne, suggesting the preferential use of the fluoroacetamidine warhead in next generation irreversible PAD inhibitors. Notably, these compounds can be used in a variety of modalities, including the identification of off targets of the parent compounds and as activity-based protein profiling probes in target engagement assays to demonstrate the efficacy of PAD inhibitors.
Collapse
Affiliation(s)
- Venkatesh V. Nemmara
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Venkataraman Subramanian
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Aaron Muth
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ari J. Salinger
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Aaron J. Maurais
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ronak Tilvawala
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
3
|
Wijesinghe LP, Perera SD, Larkin E, Ó Máille GM, Conway-Kenny R, Lankage BS, Wang L, Draper SM. [2 + 2 + 2] cyclotrimerisation as a convenient route to 6N-doped nanographenes: a synthetic introduction to hexaazasuperbenzenes. RSC Adv 2017. [DOI: 10.1039/c7ra02648j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel, fully and 5/6th partially-fused, hexaazasuperbenzenes are obtained using a variety of oxidative cyclodehydrogenation conditions. Their spectroscopic properties are compared.
Collapse
Affiliation(s)
| | - Sarath D. Perera
- School of Chemistry
- Trinity College
- Dublin, D2
- Ireland
- Chemistry Department
| | | | | | | | | | | | | |
Collapse
|
4
|
Vij V, Bhalla V, Kumar M. Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold. Chem Rev 2016; 116:9565-627. [DOI: 10.1021/acs.chemrev.6b00144] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Varun Vij
- Department of Chemistry,
UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vandana Bhalla
- Department of Chemistry,
UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar
- Department of Chemistry,
UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|