1
|
Fall A, Tintori G, Rollet M, Zhao Y, Avenel A, Charles L, Bergé‐Lefranc D, Clément JL, Redon S, Gigmes D, Huix‐Rotllant M, Vanelle P, Broggi J. α-Trifluoromethylated Quinolines as Safe and Storable PET-Donor for Radical Polymerizations. Macromol Rapid Commun 2025; 46:e2400710. [PMID: 39501616 PMCID: PMC11800065 DOI: 10.1002/marc.202400710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Indexed: 02/07/2025]
Abstract
In the quest for powerful, safe, and storable photoinduced-electron transfer (PET) donors, the attention is turned to the α-trihalomethylated amine moiety that is not studied in the context of PET-reductants. The thermal and photophysical properties of α-trifluoromethylated quinolines are thus studied and their reducing abilities evaluated as initiators of polymerization reactions. Polymers of high molecular weights are obtained through a radical polymerization process and the PET-donor can be stored within the monomer for several months without losing its efficiency. Mechanistic investigations, combining spectroscopic analysis and theoretical calculations, confirm the mode of activation of these electron donors and the generation of radical intermediates through single electron transfer.
Collapse
Affiliation(s)
- Arona Fall
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Guillaume Tintori
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Marion Rollet
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Yuxi Zhao
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Amandine Avenel
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Laurence Charles
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - David Bergé‐Lefranc
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Jean Louis Clément
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Sébastien Redon
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Didier Gigmes
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | | | - Patrice Vanelle
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| | - Julie Broggi
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)Marseille13013France
| |
Collapse
|
2
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
3
|
Tanaka T, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S, Hasegawa E. A Photocatalytic System Composed of Benzimidazolium Aryloxide and Tetramethylpiperidine 1-Oxyl to Promote Desulfonylative α-Oxyamination Reactions of α-Sulfonylketones. ACS OMEGA 2022; 7:4655-4666. [PMID: 35155957 PMCID: PMC8829864 DOI: 10.1021/acsomega.1c06857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
A new photocatalytic system was developed for carrying out desulfonylative α-oxyamination reactions of α-sulfonylketones in which α-ketoalkyl radicals are generated. The catalytic system is composed of benzimidazolium aryloxide betaines (BI+-ArO-), serving as visible light-absorbing electron donor photocatalysts, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), playing dual roles as an electron donor for catalyst recycling and a reagent to capture the generated radical intermediates. Information about the detailed nature of BI+-ArO- and the photocatalytic processes with TEMPO was gained using absorption spectroscopy, electrochemical measurements, and density functional theory calculations.
Collapse
Affiliation(s)
- Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takehiro Kiuchi
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-ya Takizawa
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shigeru Murata
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
4
|
Ozaki T, Yorimitsu H, Perry GJP. Primary Sulfonamide Functionalization via Sulfonyl Pyrroles: Seeing the N-Ts Bond in a Different Light. Chemistry 2021; 27:15387-15391. [PMID: 34409663 DOI: 10.1002/chem.202102748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Despite common occurrence in molecules of value, methods for transforming sulfonamides are distinctly lacking. Here we introduce easy-to-access sulfonyl pyrroles as synthetic linchpins for sulfonamide functionalization. The versatility of the sulfonyl pyrrole unit is shown by generating a variety of products through chemical, electrochemical and photochemical pathways. Preliminary results on the direct functionalization of primary sulfonamides are also provided, which may lead to new modes of activation.
Collapse
Affiliation(s)
- Tomoya Ozaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Gregory J P Perry
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. J Org Chem 2021; 86:2556-2569. [PMID: 33492136 DOI: 10.1021/acs.joc.0c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Desulfonylation reactions of α-sulfonylketones promoted by photoinduced electron transfer with 2-hydroxyarylbenzimidazolines (BIH-ArOH) were investigated. Under aerobic conditions, photoexcited 2-hydroxynaphthylbenzimidazoline (BIH-NapOH) promotes competitive reduction (forming alkylketones) and oxidation (producing α-hydroxyketones) of sulfonylketones through pathways involving the intermediacy of α-ketoalkyl radicals. The results of an examination of the effects of solvents, radical trapping reagents, substituents of sulfonylketones, and a variety of hydroxyaryl- and aryl-benzimidazolines (BIH-ArOH and BIH-Ar) suggest that the oxidation products are produced by dissociation of α-ketoalkyl radicals from the initially formed solvent-caged radical ion pairs followed by reaction with molecular oxygen. In addition, the observations indicate that the reduction products are generated by proton or hydrogen atom transfer in solvent-caged radical ion pairs derived from benzimidazolines and sulfonylketones. The results also suggest that arylsulfinate anions arising by carbon-sulfur bond cleavage of sulfonylketone radical anions act as reductants in the oxidation pathway to convert initially formed α-hydroperoxyketones to α-hydroxyketones. Finally, density functional theory calculations were performed to explore the structures and properties of radical ions of sulfonylketones as well as BIH-NapOH.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shyota Nakamura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
7
|
Heredia MD, Guerra WD, Barolo SM, Fornasier SJ, Rossi RA, Budén ME. Transition-Metal-Free and Visible-Light-Mediated Desulfonylation and Dehalogenation Reactions: Hantzsch Ester Anion as Electron and Hydrogen Atom Donor. J Org Chem 2020; 85:13481-13494. [DOI: 10.1021/acs.joc.0c01523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Micaela D. Heredia
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Walter D. Guerra
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Silvia M. Barolo
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Santiago J. Fornasier
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Roberto A. Rossi
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - María E. Budén
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
8
|
Hasegawa E, Yoshioka N, Tanaka T, Nakaminato T, Oomori K, Ikoma T, Iwamoto H, Wakamatsu K. Sterically Regulated α-Oxygenation of α-Bromocarbonyl Compounds Promoted Using 2-Aryl-1,3-dimethylbenzimidazolines and Air. ACS OMEGA 2020; 5:7651-7665. [PMID: 32280909 PMCID: PMC7144160 DOI: 10.1021/acsomega.0c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 05/08/2023]
Abstract
A debrominative oxygenation protocol has been developed for the conversion of α-bromo-α,α-dialkyl-substituted carbonyl compounds to their corresponding α-hydroxy analogues. For example, stirring a solution of α-bromoisobutyrophenone and 2-aryl-1,3-dimethylbenzimidazoline (BIH-Ar) at room temperature under an air atmosphere leads to the efficient formation of α-hydroperoxyisobutyrophenone, which can be converted to α-hydroxyisobutyrophenone using Me2S reduction. In contrast, reaction of α-bromoacetophenone under the same conditions produces the α-hydrogenated product acetophenone. α-Keto-alkyl and benzimidazolyl radicals (BI•-Ar), generated via dissociative electron transfer from BIH-Ar to α-bromoketone substrates, serve as key intermediates in the oxidation and reduction processes. The dramatic switch from hydrogenation to oxygenation is attributed to a steric effect of α-alkyl substituents, which causes hydrogen atom abstraction from sterically crowded BIH-Ar to α-keto-alkyl radicals to be slow and enable preferential reaction with molecular oxygen. Generation of the α-keto-alkyl radical and BI•-Ar intermediates in these process and their sterically governed hydrogen atom transfer reactions are supported by results arising from DFT calculations. Moreover, an electron spin resonance study showed that visible light irradiation of phenyl benzimidazoline (BIH-Ph) in the presence of molecular oxygen produces the benzimidazolyl radical (BI•-Ph). The addition of thiophenol into the reaction of α-bromoisobutyrophenone and BIH-Ph predominantly produced α-phenylthiolated isobutyrophenone even if a high concentration of molecular oxygen exists. Furthermore, the developed protocol was applied to other α-bromo-α,α-dialkylated carbonyl compounds.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- E-mail:
| | - Naoki Yoshioka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Taisei Nakaminato
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department
of Chemistry, Faculty of Science, Okayama
University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
9
|
Hasegawa E, Tanaka T, Izumiya N, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S. Protocol for Visible-Light-Promoted Desulfonylation Reactions Utilizing Catalytic Benzimidazolium Aryloxide Betaines and Stoichiometric Hydride Donor Reagents. J Org Chem 2020; 85:4344-4353. [PMID: 32073264 DOI: 10.1021/acs.joc.0c00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An unprecedented photocatalytic system consisting of benzimidazolium aryloxide betaines (BI+-ArO-) and stoichiometric hydride reducing reagents was developed for carrying out desulfonylation reactions of N-sulfonyl-indoles, -amides, and -amines, and α-sulfonyl ketones. Measurements of absorption spectra and cyclic voltammograms as well as density functional theory (DFT) calculations were carried out to gain mechanistic information. In the catalytic system, visible-light-activated benzimidazoline aryloxides (BIH-ArO-), generated in situ by hydride reduction of the corresponding betaines BI+-ArO-, donate both an electron and a hydrogen atom to the substrates. A modified protocol was also developed so that a catalytic quantity of more easily prepared hydroxyaryl benzimidazolines (BIH-ArOH) is used along with a stoichiometric hydride donor to promote the photochemical desulfonylation reactions.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takehiro Kiuchi
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Farooq S, Ngaini Z. One Pot and Two Pot Synthetic Strategies and Biological Applications of Epoxy-Chalcones. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00128-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Rohrbach S, Shah RS, Tuttle T, Murphy JA. Corrigendum: Neutral Organic Super Electron Donors Made Catalytic. Angew Chem Int Ed Engl 2019; 58:15183. [PMID: 31609546 DOI: 10.1002/anie.201910425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Rohrbach S, Shah RS, Tuttle T, Murphy JA. Berichtigung: Neutral Organic Super Electron Donors Made Catalytic. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
|
14
|
Mohammadi H, Shaterian HR. Visible Light Irradiation: A Green-Pathway-Promoted Pseudo Four Component Synthesis of Chromeno[4,3,2-de
][1,6]naphthyridine Derivatives under Mild, and Catalyst-Free Conditions. ChemistrySelect 2018. [DOI: 10.1002/slct.201802083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hadi Mohammadi
- Department of Chemistry; Faculty of Sciences; University of Sistan and Baluchestan PO Box 98135-674, Zahedan; Iran
| | - Hamid Reza Shaterian
- Department of Chemistry; Faculty of Sciences; University of Sistan and Baluchestan PO Box 98135-674, Zahedan; Iran
| |
Collapse
|
15
|
Matsubara R, Yabuta T, Md Idros U, Hayashi M, Ema F, Kobori Y, Sakata K. UVA- and Visible-Light-Mediated Generation of Carbon Radicals from Organochlorides Using Nonmetal Photocatalyst. J Org Chem 2018; 83:9381-9390. [PMID: 30005575 DOI: 10.1021/acs.joc.8b01306] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon radicals are reactive species useful in various organic transformations. The C-X bond cleavage of organohalides by photoirradiation is a common method to generate carbon radicals in a controlled fashion. The use of organochloride substrates is still a formidable challenge due to the low reduction potential and the high dissociation energy of the C-Cl bond. In this report, we address these issues by using a nonmetal organic molecule with a relatively simple structure as a photocatalyst. In this catalyst (bis(dimethylamino)carbazole), the amino groups increase both the HOMO and LUMO energy levels, especially in the former. As a result, compared to the parent molecule, the new catalyst shows experimentally red-shifted absorption in the visible region and forms an excited state with better reducing capability. This photocatalyst was used in the reduction of unactivated aryl chlorides and alkyl chlorides in the presence of hydrogen atom donor at room temperature. The catalytic system can also be applied to the coupling of aryl chlorides with electron-rich arene and heteroarenes to affect the C-C bond-forming reactions. Our mechanistic study results support the assumption that carbon radicals are formed from the organochlorides via a single-electron-transfer step.
Collapse
Affiliation(s)
- Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science , Kobe University , Nada , Kobe 657-8501 , Japan
| | - Tatsushi Yabuta
- Department of Chemistry, Graduate School of Science , Kobe University , Nada , Kobe 657-8501 , Japan
| | - Ubaidah Md Idros
- Department of Chemistry, Graduate School of Science , Kobe University , Nada , Kobe 657-8501 , Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science , Kobe University , Nada , Kobe 657-8501 , Japan
| | - Fumitoshi Ema
- Department of Chemistry, Graduate School of Science , Kobe University , Nada , Kobe 657-8501 , Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science , Kobe University , Nada , Kobe 657-8501 , Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences , Toho University , Miyama, Funabashi , Chiba 274-8510 , Japan
| |
Collapse
|
16
|
Hasegawa E, Nagakura Y, Izumiya N, Matsumoto K, Tanaka T, Miura T, Ikoma T, Iwamoto H, Wakamatsu K. Visible Light and Hydroxynaphthylbenzimidazoline Promoted Transition-Metal-Catalyst-Free Desulfonylation of N-Sulfonylamides and N-Sulfonylamines. J Org Chem 2018; 83:10813-10825. [DOI: 10.1021/acs.joc.8b01536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuto Nagakura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Keisuke Matsumoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- Center for Coordination of Research Facilities, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
17
|
Fukuyama T, Fujita Y, Miyoshi H, Ryu I, Kao SC, Wu YK. Electron transfer-induced reduction of organic halides with amines. Chem Commun (Camb) 2018; 54:5582-5585. [PMID: 29766164 DOI: 10.1039/c8cc02445f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of a variety of organo halides was examined by using amines as a sacrificial hydrogen source. UV light-induced reduction of vinyl and aryl halides with triethylamine proceeded smoothly to give the corresponding reduced products. High temperature heating also caused the reduction and DABCO (1,4-diazabicyclo[2.2.2]octane) also served as a good reducing reagent.
Collapse
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Kawamoto T, Shimaya Y, Curran DP, Kamimura A. Tris(trimethylsilyl)silane-mediated Reductive Decyanation and Cyano Transfer Reactions of Malononitriles. CHEM LETT 2018. [DOI: 10.1246/cl.171231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Yudai Shimaya
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Dennis P. Curran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Akio Kamimura
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
19
|
Hasegawa E, Izumiya N, Miura T, Ikoma T, Iwamoto H, Takizawa SY, Murata S. Benzimidazolium Naphthoxide Betaine Is a Visible Light Promoted Organic Photoredox Catalyst. J Org Chem 2018. [PMID: 29537851 DOI: 10.1021/acs.joc.8b00282] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzimidazolium naphthoxide (-ONap-BI+) was first synthesized and utilized as an unprecedented betaine photoredox catalyst. Photoexcited state of -ONap-BI+ generated by visible light irradiation catalyzes the reductive deiodination as well as desulfonylation reactions in which 1,3-dimethyl-2-phenylbenzimidazoline (Ph-BIH) cooperates with as an electron and hydrogen atom donor. Significant solvent effects on the reaction progress were discovered, and specific solvation toward imidazolium and naphthoxide moieties of -ONap-BI+ was proposed.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan.,Center for Coordination of Research Facilities , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science , Niigata University , 8050 Ikarashi-2 , Nishi-ku, Niigata 950-2181 , Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| |
Collapse
|
20
|
Mattalia JMR. The reductive decyanation reaction: an overview and recent developments. Beilstein J Org Chem 2017; 13:267-284. [PMID: 28326136 PMCID: PMC5331330 DOI: 10.3762/bjoc.13.30] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022] Open
Abstract
This review presents an overview of the reductive decyanation reaction with a special interest for recent developments. This transformation allows synthetic chemists to take advantages of the nitrile functional group before its removal. Mechanistic details and applications to organic synthesis are provided.
Collapse
|