1
|
Hosseini Nasab YS, Rajai-Daryasarei S, Rominger F, Balalaie S. Tosylhydrazide-Induced 1,6-Enyne Radical Cyclization under Copper Catalysis: Access to 3,4-Dihydronaphthalen-1(2 H)-one Derivatives. J Org Chem 2024; 89:13575-13584. [PMID: 39215225 DOI: 10.1021/acs.joc.4c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We describe an approach to access 4-aroyl-3-aryl-3,4-dihydronaphthalen-1(2H)-one derivatives in 41-79% yields through the Cu-catalyzed radical cyclization/desulfonylation of 1,6-enynes with tosylhydrazide under air conditions. This alternative desulfonylation strategy combines mild conditions, external oxidant-free processes, and sustainability, contributing to more environmentally friendly organic synthesis. The mechanistic studies showed that the CuCl/O2 combination serves as the source of the oxygen atom needed to form the C═O bond. The existence of tosylhydrazide is crucial for this conversion.
Collapse
Affiliation(s)
- Yeganeh Sadat Hosseini Nasab
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| |
Collapse
|
2
|
Fu D, Xi C, Xu J. Demethyl oxidative halogenation of diacyl dimethylsulfonium methylides. Org Biomol Chem 2023; 21:3991-3996. [PMID: 37114954 DOI: 10.1039/d3ob00499f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
α-Halo-α-methylthio-β-ketosulfones containing a quaternary halocarbon stereocenter were prepared via selective demethyl oxidative halogenations of diacyl dimethylsulfonium methylides in moderate to excellent yields (39 examples; up to 98%). The current protocols directly and efficiently introduce a halogen atom into organic compounds with high functional group tolerance under metal-free conditions.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Changmeng Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
3
|
Demidoff FC, Caleffi GS, Figueiredo M, Costa PRR. Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of Chalcones in Water: Application to the Enantioselective Synthesis of Flavans BW683C and Tephrowatsin E. J Org Chem 2022; 87:14208-14222. [PMID: 36251770 DOI: 10.1021/acs.joc.2c01733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The oxo-tethered-Ru(II) precatalyst promoted the one-pot C═C/C═O reduction of chalcones using sodium formate as the hydrogen source in water through asymmetric transfer hydrogenation. Twenty-seven 1,3-diarylpropan-1-ols were obtained in good to excellent yields (up to 96%) and enantiomeric purities (up to 98:2). Our data suggested that the enones are first reduced to the corresponding dihydrochalcones (1,4-selectivity) and then into 1,3-diarylpropan-1-ols (C═O reduction). The stereoelectronic effects of electron-donating and electron-withdrawing groups at the ortho, meta and para positions of both aromatic rings were evaluated. The 2-OH group at the B ring was well tolerated, allowing a straightforward enantioselective synthesis of two flavans through the Mitsunobu cyclization, the antiviral (S)-BW683C and the natural flavan (S)-tephrowatsin E.
Collapse
Affiliation(s)
- Felipe C Demidoff
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Guilherme S Caleffi
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Marcella Figueiredo
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| |
Collapse
|
4
|
Jannapu Reddy R, Haritha Kumari A, Kumar JJ. Recent advances in the synthesis and applications of β-keto sulfones: new prospects for the synthesis of β-keto thiosulfones. Org Biomol Chem 2021; 19:3087-3118. [PMID: 33885563 DOI: 10.1039/d1ob00111f] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review mainly focuses on recent developments in the preparation of β-keto sulfones and their extensive synthetic applications. New prospects for the synthesis of β-keto thiosulfones have also been highlighted. Over the last decade, there has been exponential growth in the direct construction of β-keto sulfones using a wide variety of keto and sulfonyl precursors. Of note, the most promising photoredox transformations and electrochemical synthesis methods of β-keto sulfones are also presented. Moreover, β-keto sulfones are versatile building blocks in organic synthesis due to their three essential functional groups: sulfonyl, carbonyl, and active methylene moieties. The convenient preparation of β-keto sulfones allows the synthesis of many valuable carbocyclic and heterocyclic compounds, and the effortless removal of the sulfonyl moiety via transformations is supported. The chemistry of β-keto sulfones (2013 to present) can be divided into several sections based on the sulfonyl surrogates, and ubiquitous synthetic strategies were systematically outlined.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | | | | |
Collapse
|
5
|
Chang MY, Tsai YL, Chen HY. CuBr 2-Mediated One-Pot Synthesis of Sulfonyl 9-Fluorenylidenes. J Org Chem 2020; 85:6897-6909. [PMID: 32383591 DOI: 10.1021/acs.joc.0c00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this article, a high-yield method for the synthesis of sulfonyl 9-fluorenylidenes is described, which consists of a one-pot straightforward three-step synthetic route, including (i) CuBr2-mediated α-bromination of o-arylacetophenone, (ii) sequential nucleophilic substitution of the resulting α-bromo o-arylacetophenone with sodium sulfinate (RSO2Na), and (iii) the CuBr2-mediated intramolecular Friedel-Crafts cyclizative dehydration. A plausible mechanism is proposed and discussed. This protocol provides a highly effective regio- and stereoselective annulation via the formation of one carbon-carbon (C-C) bond and one carbon-sulfur (C-S) bond.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Karmakar S, Mandal T, Dash J. Ring Closing Metathesis Approach for the Synthesis of o
-Terphenyl Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shilpi Karmakar
- School of Chemical Sciences; Indian Association for the Cultivation of Science; -700032 Jadavpur, Kolkata India
| | - Tirtha Mandal
- School of Chemical Sciences; Indian Association for the Cultivation of Science; -700032 Jadavpur, Kolkata India
| | - Jyotirmayee Dash
- School of Chemical Sciences; Indian Association for the Cultivation of Science; -700032 Jadavpur, Kolkata India
| |
Collapse
|
7
|
Ahmed W, Zhang S, Yu X, Feng X, Yamamoto Y, Bao M. Direct Carbohydroxylation of Arylalkenes with Allylic Alcohols: Cooperative Catalysis of Copper, Silver, and a Brønsted Acid. Angew Chem Int Ed Engl 2019; 58:2495-2499. [PMID: 30600884 DOI: 10.1002/anie.201813148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Waqar Ahmed
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| | - Sheng Zhang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| | - Xiujuan Feng
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
- Research Organization of Science and TechnologyRitsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Ming Bao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| |
Collapse
|
8
|
Ahmed W, Zhang S, Yu X, Feng X, Yamamoto Y, Bao M. Direct Carbohydroxylation of Arylalkenes with Allylic Alcohols: Cooperative Catalysis of Copper, Silver, and a Brønsted Acid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Waqar Ahmed
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 China
- School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin 124221 China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 China
- School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin 124221 China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 China
- School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin 124221 China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 China
- School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin 124221 China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 China
- School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin 124221 China
- Research Organization of Science and Technology; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 China
- School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin 124221 China
| |
Collapse
|
9
|
Ali S, Milanezi H, Alves TMF, Tormena CF, Ferreira MAB. Cobalt-Catalyzed Stereoselective Synthesis of 2,5- trans-THF Nitrile Derivatives as a Platform for Diversification: Development and Mechanistic Studies. J Org Chem 2018; 83:7694-7713. [PMID: 29878776 DOI: 10.1021/acs.joc.8b00575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A straightforward protocol integrating a sustainable approach for the synthesis of new 2,5- trans-THF nitrile derivatives enabling an easy diversification of its side chain scaffolds is described. The reaction tolerated different aromatic and alkyl substituents, affording the corresponding 2,5- trans-THFs in high diastereoselectivity. A detailed mechanistic study using DFT calculation reveals details of the ligand-exchange step, suggesting an inner-sphere syn attack to form the 2,5- trans stereochemistry as the most likely pathway, excluding the previous cation radical intermediate. The formation of a Co-C intermediate is suggested on the basis of the homolytic cleavage to give the previously proposed free carbon radical intermediate.
Collapse
Affiliation(s)
- Sajjad Ali
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry , Federal University of São Carlos - UFSCar , São Carlos, São Paulo 13565-905 , Brazil
| | - Henrique Milanezi
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry , Federal University of São Carlos - UFSCar , São Carlos, São Paulo 13565-905 , Brazil
| | - Tânia M F Alves
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry , Federal University of São Carlos - UFSCar , São Carlos, São Paulo 13565-905 , Brazil
| | | | - Marco A B Ferreira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry , Federal University of São Carlos - UFSCar , São Carlos, São Paulo 13565-905 , Brazil
| |
Collapse
|