1
|
Can M, Parlar ED, Akçil M, Kızılarslan A, Boran S, Kökçam AH, Uygun Ö. Optimization of Au(III) adsorption by the Taguchi method using pyrogallol functionalized silica nanoparticles. Phys Chem Chem Phys 2023; 25:13560-13576. [PMID: 37139576 DOI: 10.1039/d3cp00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pyrogallol molecules were successfully immobilized onto aminopropyl molecule functionalized MCM41 nanoparticles to obtain a fast and high gold adsorption capacity. The Taguchi statistical method was used to determine the factors affecting the gold(III) adsorption efficiency. The effect of six factors, pH, rate, adsorbent mass, temperature, initial Au(III) concentration and time, each with 5 levels, on the adsorption capacity was investigated by forming an L25 orthogonal. The analysis of variance (ANOVA) of each factor showed that all factors had significant effects on adsorption. pH 5, 250 rpm stirring speed, 0.025 g adsorbent mass, 40 °C temperature, 600 mg L-1 Au(III) concentration and 15 min time were determined to be the optimum adsorption conditions. The maximum Langmuir monolayer adsorption capacity of APMCM1-Py for Au(III) was calculated to be 168.54 mg g-1 at 303 K. The adsorption mechanism fits the pseudo-second-order kinetic model assuming the formation of a single chemical adsorption layer on the adsorbent surface. The adsorption isotherms are best represented using the Langmuir isotherm model. It exhibits a spontaneous endothermic behavior. FTIR, SEM, EDX and XRD analyses showed that mostly phenolic -OH functional groups adsorb Au(III) ions on the APMCMC41-Py surface with their reducing character. These results enable the rapid recovery of gold ions from weakly acidic aqueous solutions by reduction of APMCM41-Py NPs.
Collapse
Affiliation(s)
- Mustafa Can
- Department of Metallurgical and Materials Engineering, Technology Faculty, Sakarya University of Applied Sciences, Esentepe Campus, 54187, Sakarya, Turkey.
- Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Engin Deniz Parlar
- Department of Metallurgical and Materials Engineering, Technology Faculty, Sakarya University of Applied Sciences, Esentepe Campus, 54187, Sakarya, Turkey.
| | - Mustafa Akçil
- Department of Metallurgical and Materials Engineering, Technology Faculty, Sakarya University of Applied Sciences, Esentepe Campus, 54187, Sakarya, Turkey.
| | - Abdülkadir Kızılarslan
- Department of Metallurgical & Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya, Turkey
| | - Semra Boran
- Department of Industrial Engineering, Faculty of Engineering, Sakarya University, Sakarya, Turkey
| | - Abdullah Hulusi Kökçam
- Department of Industrial Engineering, Faculty of Engineering, Sakarya University, Sakarya, Turkey
| | - Özer Uygun
- Department of Industrial Engineering, Faculty of Engineering, Sakarya University, Sakarya, Turkey
| |
Collapse
|
2
|
Ali I, Shrivastava V. Recent advances in technologies for removal and recovery of selenium from (waste)water: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112926. [PMID: 34118514 DOI: 10.1016/j.jenvman.2021.112926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) is distributed into different environmental compartments by natural and anthropogenic activities, and generally discharged in the form of selenate [SeO42-] and selenite [SeO32-], which are both toxic. Physical-chemical and biological treatment processes have been reported to exhibit good treatment efficiencies for Se from aqueous streams, only a few demonstrated to achieve effluent concentrations <5 μg/L. Moreover, there are only a few numbers of studies that describe the progress in technological developments over the last decade. Therefore, to unify the state of knowledge, identify ongoing research trends, and determine the challenges associated with available technologies, this systematic review critically analyses the published research on Se treatment. Specific topics covered in this review include (1) Se chemistry, toxicity, sources and legislation, (2) types of Se treatment technologies, (3) development in Se treatment approaches, (4) Se recovery and circular economy and (5) future prospects. The current research has been found to majorly focused on Se removal via adsorption techniques. However, the key challenges facing Se treatment technologies are related to the presence of competing ions in the solution and the persistence of selenate compared to selenite during their reduction.
Collapse
Affiliation(s)
- Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium.
| | | |
Collapse
|
3
|
Lin B, Li S, Fang L, Zhu M, Xiong C. Synthesis and Characterization of Amino-Terminated Chloration Modified Peanut Shell and Its Application to Preconcentrate and Detect the Concentration of Sunset Yellow in Drink and Jelly Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Min M, Shen C, Fang L, Zhu B, Li J, Yao L, Jiang Y, Xiong C. Design of a selective regenerable cellulose microcolumn for selenium efficient recovery and economic determination. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2016.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Miao X, Pi L, Fang L, Wu R, Xiong C. Application and characterization of magnetic chitosan microspheres for enhanced immobilization of cellulase. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1247830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xixi Miao
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, China,
| | - Leilei Pi
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, China,
| | - Lei Fang
- Simthfield Foods, Cincinnati, OH, USA, and
| | - Ran Wu
- Zhejiang Linjiang Chemical Co. Ltd, Shaoxing, China
| | - Chunhua Xiong
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, China,
| |
Collapse
|