1
|
Pathak T, Bose A. 1,5-disubstituted 1,2,3-triazolylated carbohydrates and nucleosides. Carbohydr Res 2024; 541:109126. [PMID: 38823061 DOI: 10.1016/j.carres.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.
Collapse
Affiliation(s)
- Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
2
|
Ayre J, Redmond JM, Vitulli G, Tomlinson L, Weaver R, Comeo E, Bosquillon C, Stocks MJ. Design, Synthesis, and Evaluation of Lung-Retentive Prodrugs for Extending the Lung Tissue Retention of Inhaled Drugs. J Med Chem 2022; 65:9802-9818. [PMID: 35798565 PMCID: PMC9340777 DOI: 10.1021/acs.jmedchem.2c00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A major limitation
of pulmonary delivery is that drugs can exhibit
suboptimal pharmacokinetic profiles resulting from rapid elimination
from the pulmonary tissue. This can lead to systemic side effects
and a short duration of action. A series of dibasic dipeptides attached
to the poorly lung-retentive muscarinic M3 receptor antagonist piperidin-4-yl
2-hydroxy-2,2-diphenylacetate (1) through a pH-sensitive-linking
group have been evaluated. Extensive optimization resulted in 1-(((R)-2-((S)-2,6-diaminohexanamido)-3,3-dimethylbutanoyl)oxy)ethyl
4-(2-hydroxy-2,2-diphenylacetoxy)piperidine-1-carboxylate (23), which combined very good in vitro stability and
very high rat lung binding. Compound 23 progressed to
pharmacokinetic studies in rats, where, at 24 h post dosing in the
rat lung, the total lung concentration of 23 was 31.2
μM. In addition, high levels of liberated drug 1 were still detected locally, demonstrating the benefit of this novel
prodrug approach for increasing the apparent pharmacokinetic half-life
of drugs in the lungs following pulmonary dosing.
Collapse
Affiliation(s)
- Jack Ayre
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Joanna M Redmond
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Giovanni Vitulli
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Laura Tomlinson
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Richard Weaver
- XenoGesis Ltd, Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K
| | - Eleonora Comeo
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Cynthia Bosquillon
- School of Pharmacy, Boots Science Building, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Michael J Stocks
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
3
|
Park S, Lee S, Kim JH, Choi WJ, Kim S. Memory of Chirality in the Asymmetric Synthesis of Piperidines with Vicinal Stereocenters by Intramolecular Sn2' Reaction. Chem Asian J 2021; 16:3097-3101. [PMID: 34432952 DOI: 10.1002/asia.202100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Indexed: 11/10/2022]
Abstract
Intramolecular Sn2' cyclization of α-amino ester enolates provided piperidine derivatives with vicinal quaternary-tertiary stereocenters with excellent diastereo- and enantioselectivity via memory of chirality and the Thorpe-Ingold effect. DFT calculations provided a mechanistic rationale for the increase in chirality preservation via the Thorpe-Ingold effect. This new method has the potential to be integrated into concise asymmetric synthesis of bioactive molecules containing multisubstituted piperidine moieties.
Collapse
Affiliation(s)
- Seungbae Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seokwoo Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae Hyun Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 410-820, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Affiliation(s)
- Manoj Dhameja
- Department of Chemistry School Of Physical & Decision SciencesBabasaheb Bhimrao Ambedkar University (A Central University) Rae barelli Road Lucknow 226025 (U. P.) India
| | - Hariom Kumar
- Department of Chemistry School Of Physical & Decision SciencesBabasaheb Bhimrao Ambedkar University (A Central University) Rae barelli Road Lucknow 226025 (U. P.) India
| | - Preeti Gupta
- Department of Chemistry School Of Physical & Decision SciencesBabasaheb Bhimrao Ambedkar University (A Central University) Rae barelli Road Lucknow 226025 (U. P.) India
| |
Collapse
|
5
|
Mahmoud AG, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Arylhydrazone ligands as Cu-protectors and -catalysis promoters in the azide-alkyne cycloaddition reaction. Dalton Trans 2019; 48:1774-1785. [PMID: 30640328 DOI: 10.1039/c8dt04771e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of water soluble copper(ii) complexes, [Cu(κO1O2N-H2L1)(H2O)2]·2H2O (2), [Cu(κO-H3L1)2(H2O)4] (3), [Cu(κO-H4L2)2(H2O)4] (5) and [Cu(H2O)6]·2H2L3·2(CH3)2NCHO (7), were prepared by the reaction of Cu(NO3)2·3H2O with sodium (Z)-2-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)benzenesulfonate, [Na(μ4-1:2κO1,2κO2,3κO3,4κO4-H3L1)]n (1; for 2 and 3), sodium (Z)-3-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)-4-hydroxybenzene-sulfonate, [Na(μ-1κO1,2κO2-H4L2)]2 (4; for 5) or sodium (Z)-2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl)naphthalene-1-sulfonate, [Na(μ-1κO1O2,2κO3-H2L3)(CH3OH)2]2 (6; for 7). Compounds 1-7 were fully characterized, also by single-crystal X-ray diffraction analysis, and applied as homogeneous catalysts for the azide-alkyne cycloaddition (AAC) reaction to afford 1,4-disubstituted 1,2,3-triazoles. A structure-catalytic activity relationship has been recognized for the first time on the basis of the occurrence of resonance- and charge-assisted hydrogen bond interactions (RAHB and CAHB), in charge and ligand binding modes, enabling the catalytic activity of the compounds to be ordered as follows: Cu(NO3)2≪7 (complex salt with RAHB and CAHB) < 3 (with RAHB and CAHB) < 5 (with RAHB) < 2 (neither RAHB nor CAHB). Complex 2, without such non-covalent interactions, was found to be the most efficient catalyst for the AAC reaction, affording up to 98% product yield after being placed for 15 min, at 125 °C, in a water/acetonitrile mixture under low power (10 W) MW irradiation.
Collapse
Affiliation(s)
- Abdallah G Mahmoud
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
6
|
Chavan S, Gavale KS, Khan A, Joshi R, Kumbhar N, Chakravarty D, Dhavale DD. Iminosugars Spiro-Linked with Morpholine-Fused 1,2,3-Triazole: Synthesis, Conformational Analysis, Glycosidase Inhibitory Activity, Antifungal Assay, and Docking Studies. ACS OMEGA 2017; 2:7203-7218. [PMID: 30023541 PMCID: PMC6044920 DOI: 10.1021/acsomega.7b01299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/13/2017] [Indexed: 05/21/2023]
Abstract
Synthesis of iminosugars 1, 2, 3a, and 4a and N-alkyl (ethyl, butyl, hexyl, octyl, decyl, and dodecyl) derivatives 3b-g and 4b-g spiro-linked with morpholine-fused 1,2,3-triazole is described. Conformation of the piperidine ring in each spiro-iminosugar was evaluated by 1H NMR spectroscopy, and conformational change in N-alkylated compounds 4b-g with respect to parent spiro-iminosugar 4a is supported by density functional theory calculations. Out of 16 new spiro-iminosugars, the spiro-iminosugars 3a (IC50 = 0.075 μM) and 4a (IC50 = 0.036 μM) were found to be more potent inhibitors of α-glucosidase than the marketed drug miglitol (IC50 = 0.100 μM). In addition, 3a (minimum inhibition concentration (MIC) = 0.85 μM) and 4a (MIC = 0.025 μM) showed more potent antifungal activity against Candida albicans than antifungal drug amphotericin b (MIC = 1.25 μM). In few cases, the N-alkyl derivatives showed increase of α-glucosidase inhibition and enhancement of antifungal activity compare to the respective parent iminosugar. The biological activities were further substantiated by molecular docking studies.
Collapse
Affiliation(s)
- Shrawan
R. Chavan
- Garware
Research Centre, Department of Chemistry, Department of Chemistry, Institute of Bio-informatics
and Biotechnology, and Central Instrumentation Facility, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
| | - Kishor S. Gavale
- Garware
Research Centre, Department of Chemistry, Department of Chemistry, Institute of Bio-informatics
and Biotechnology, and Central Instrumentation Facility, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
| | - Ayesha Khan
- Garware
Research Centre, Department of Chemistry, Department of Chemistry, Institute of Bio-informatics
and Biotechnology, and Central Instrumentation Facility, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
| | - Rakesh Joshi
- Garware
Research Centre, Department of Chemistry, Department of Chemistry, Institute of Bio-informatics
and Biotechnology, and Central Instrumentation Facility, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
| | - Navanath Kumbhar
- Garware
Research Centre, Department of Chemistry, Department of Chemistry, Institute of Bio-informatics
and Biotechnology, and Central Instrumentation Facility, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
| | - Debamitra Chakravarty
- Garware
Research Centre, Department of Chemistry, Department of Chemistry, Institute of Bio-informatics
and Biotechnology, and Central Instrumentation Facility, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
| | - Dilip D. Dhavale
- Garware
Research Centre, Department of Chemistry, Department of Chemistry, Institute of Bio-informatics
and Biotechnology, and Central Instrumentation Facility, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
- E-mail: ,
| |
Collapse
|