1
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
2
|
Alam S, Lee J. Progress and Future Potential of All-Small-Molecule Organic Solar Cells Based on the Benzodithiophene Donor Material. Molecules 2023; 28:molecules28073171. [PMID: 37049934 PMCID: PMC10096353 DOI: 10.3390/molecules28073171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Organic solar cells have obtained a prodigious amount of attention in photovoltaic research due to their unique features of light weight, low cost, eco-friendliness, and semitransparency. A rising trend in this field is the development of all-small-molecules organic solar cells (ASM-OSCs) due to their merits of excellent batch-to-batch reproducibility, well-defined structures, and simple purification. Among the numerous organic photovoltaic (OPV) materials, benzodithiophene (BDT)-based small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking the 17% efficiency barrier in single-junction OPV devices, indicating the significant potential of this class of materials in commercial photovoltaic applications. This review specially focuses on up-to-date information about improvements in BDT-based ASM-OSCs since 2011 and provides an outlook on the most significant challenges that remain in the field. We believe there will be more exciting BDT-based photovoltaic materials and devices developed in the near future.
Collapse
Affiliation(s)
- Shabaz Alam
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Zhang L, Chang Y, Zhu X, Yang C, Shi Y, Zhang J, Sun X, Lu K, Wei Z. Electron-deficient TVT unit-based D-A polymer donor for high-efficiency thick-film OSCs. NANOTECHNOLOGY 2021; 33:065401. [PMID: 34700301 DOI: 10.1088/1361-6528/ac335a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
As the power conversion efficiencies of organic solar cells (OSCs) have been improved continuously in recent years, more attention will be paid to the industrial production and practical application of OSCs. However, there are still many problems to be solved in the process of large-scale production. Among them, reducing the costs of the materials and enhancing the film-thickness tolerance of the active layer are the two key points. Therefore, it is urgent to develop organic semiconductor materials which are easy to synthesize and suitable for the construction of high-efficiency, thick-film OSCs. In this work, we have focused on the (E)-2-[2-(thiophen-2-yl)vinyl]thiophene (TVT) unit because of its unique coplanar structure. And we noticed that TVT was mostly used as an electron-donating unit in the previous reports. However, we have modified TVT into electron-withdrawing unit by the introduction of fluorine atoms/ester groups. And two new donor-acceptor (D-A) copolymers have been obtained by combining the electron-withdrawing TVT unit with benzo[2,1-b:4,5-b']dithiophene (BDT) unit. Among them, the polymer based on the ester modified TVT unit presents excellent photovoltaic performance by virtue of its good solubility and preferable molecular stacking mode, and the corresponding devices also show extraordinarily high-thickness tolerance. The emergence of this new electron-withdrawing TVT unit will undoubtedly further promote the development of low-cost, high-efficiency, thick-film OSCs.
Collapse
Affiliation(s)
- Liting Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yilin Chang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiangwei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Xiangnan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Kulhánek J, Klikar M, Pytela O, Almonasy N, Tydlitát J, Bureš F. Quadrupolar fluorophores with tetrafluorobenzene central electron acceptor. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|