1
|
Hernández-Velázquez ED, Granados-López AJ, López JA, Solorio-Alvarado CR. Multidrug Resistance Reversed by Maleimide Interactions. A Biological and Synthetic Overview for an Emerging Field. Chembiochem 2025; 26:e202400640. [PMID: 39383297 DOI: 10.1002/cbic.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Multidrug Resistance (MDR) can be considered one of the most frightening adaptation types in bacteria, fungi, protozoa, and eukaryotic cells. It allows the organisms to survive the attack of many drugs used in the daily basis. This forces the development of new and more complex, highly specific drugs to fight diseases. Given the high usage of medicaments, poor variation in active chemical cores, and self-medication, the appearance of MDR is more frequent each time, and has been established as a serious medical and social problem. Over the years it has been possible the identification of several genes and proteins responsible for MDR and with that the development of blockers of them to reach MDR reversion and try to avoid a global problem. These mechanisms also have been observed in cancer cells, and several calcium channel blockers have been successful in MDR reversion, and the maleimide can be found included in them. In this review, we explore particularly the tree main proteins involved in cancer chemoresistance, MRP1 (encoded by ABCC1), BCRP (encoded by ABCG2) and P-gp (encoded by ABCB1). The participation of P-gp is remarkably important, and several aspects of its regulations are discussed. Additionally, we address the history, mechanisms, reversion efforts, and we specifically focused on the maleimide synthesis as MDR-reversers in co-administration, as well as on how their biological applications are imperative to expand the available information and explore a very plausible MDR reversion source.
Collapse
Affiliation(s)
- Edson D Hernández-Velázquez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| | | | - Jesús Adrián López
- Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, 98066, Zacatecas, México
| | - César R Solorio-Alvarado
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| |
Collapse
|
2
|
Taheri E, Jafarpour F. Developing a straightforward route toward the synthesis of arylaminomaleimides by palladium-catalyzed arylation of one-pot synthesized aminomaleimides. Org Biomol Chem 2023; 22:169-174. [PMID: 38051284 DOI: 10.1039/d3ob01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
3-Aryl-4-aminomaleimides have well-demonstrated applications, such as being used as fluorophores and inhibitors. However, their previous synthesis methods have involved tedious multi-step procedures or methods that need pre-functionalized maleimides and toxic or unstable reagents. Here, a feasible method is developed to synthesize these useful compounds. This includes the one-pot preparation of 3-aminomaleimides, followed by their direct arylation through a palladium-catalyzed Heck reaction with various aryl iodides regioselectively at the β-position of their amine substituents. The results show that this method efficiently exhibits a broad scope.
Collapse
Affiliation(s)
- Elmira Taheri
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
3
|
Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto's Catalyst. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227787. [PMID: 36431888 PMCID: PMC9696348 DOI: 10.3390/molecules27227787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Known as electrophiles, maleimides are often used as acceptors in Michael additions to produce succinimides. However, reactions with maleimides as nucleophiles for enantioselective functionalization are only rarely performed. In this paper, a series of bifunctional Takemoto's catalysts were used to organocatalyze the enantioselective Michael reaction of aminomaleimides with nitroolefins. The resulting products were obtained in good yields (76-86%) with up to 94% enantiomer excess (ee). The catalyst type and the substrate scope were broadened using this methodology.
Collapse
|
4
|
Synthesis and Structural Study of Amidrazone Derived Pyrrole-2,5-Dione Derivatives: Potential Anti-Inflammatory Agents. Molecules 2022; 27:molecules27092891. [PMID: 35566243 PMCID: PMC9099820 DOI: 10.3390/molecules27092891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
1H-pyrrole-2,5-dione derivatives are known for their wide range of pharmacological properties, including anti-inflammatory and antimicrobial activities. This study aimed to synthesize new 3,4-dimethyl-1H-pyrrole-2,5-dione derivatives 2a–2f in the reaction of N3-substituted amidrazones with 2,3-dimethylmaleic anhydride and evaluate their structural and biological properties. Compounds 2a–2f were studied by the 1H-13C NMR two-dimensional techniques (HMQC, HMBC) and single-crystal X-ray diffraction (derivatives 2a and 2d). The anti-inflammatory activity of compounds 2a–2f was examined by both an anti-proliferative study and a production study on the inhibition of pro-inflammatory cytokines (IL-6 and TNF-α) in anti-CD3 antibody- or lipopolysaccharide-stimulated human peripheral blood mononuclear cell (PBMC) cultures. The antibacterial activity of compounds 2a–2f against Staphylococcus aureus, Enterococcus faecalis, Micrococcus luteus, Esherichia coli, Pseudomonas aeruginosa, Yersinia enterocolitica, Mycobacterium smegmatis and Nocardia corralina strains was determined using the broth microdilution method. Structural studies of 2a–2f revealed the presence of distinct Z and E stereoisomers in the solid state and the solution. All compounds significantly inhibited the proliferation of PBMCs in anti-CD3-stimulated cultures. The strongest effect was observed for derivatives 2a–2d. The strongest inhibition of pro-inflammatory cytokine production was observed for the most promising anti-inflammatory compound 2a.
Collapse
|
5
|
Vargas DF, Kaufman TS, Larghi EL. Total Synthesis of Aqabamycin G, a Nitrophenyl Indolylmaleimide Marine Alkaloid from Vibrio sp. WMBA. J Org Chem 2022; 87:13494-13500. [PMID: 35324169 DOI: 10.1021/acs.joc.2c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total synthesis of the marine alkaloid aqabamycin G is disclosed. The synthetic sequence involved the stepwise addition to maleimide of an indole motif and a substituted diazo-benzenoid unit derived from acetaminophen. An alternative strategy using a protected phenol is also reported.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
6
|
Lv W, Wang C, Lin XC, Mei XF, Wang W, Yang E, Ling QD, Lin ZH. Dithienylmaleimide-based D-A Conjugated Polymer Film: Photo-Responsive Behavior and Application in Electrical Memory and Logic Gates. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mohammadnia M, Poormirzaei N. Preparation and characterization of Pd supported on 5-carboxyoxindole functionalized cell@Fe 3O 4 nanoparticles as a novel magnetic catalyst for the Heck reaction. NANOSCALE ADVANCES 2021; 3:1917-1926. [PMID: 36133091 PMCID: PMC9419787 DOI: 10.1039/d0na00954g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 06/16/2023]
Abstract
Pd supported on 5-carboxyoxindole functionalized cell@Fe3O4 nanoparticles (Pd@CAI@cell@Fe3O4), a new magnetic nanocatalyst, was prepared and characterized using inductively coupled plasma atomic emission spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and energy-dispersive X-ray spectroscopy techniques. The synthesized nanocatalyst (Pd@CAI@cell@Fe3O4) was employed for Heck-type arylation of different substituted maleimides with iodoarenes in good to excellent yields. This green catalyst was easily recovered and reused several times with no substantial loss of activity, providing a clean and efficient synthetic procedure with excellent yield and reduced time.
Collapse
|
8
|
Abbasnia M, Sheykhan M, Ghaffari T, Safari E. Approach to the Synthesis of Unsymmetrical/Symmetrical Maleimides via Desulfitative Arylation at Different Temperatures. J Org Chem 2020; 85:11688-11698. [DOI: 10.1021/acs.joc.0c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Abbasnia
- Chemistry Department, University of Guilan, P.O. Box 41335-1914, 4193833697 Rasht, Iran
| | - Mehdi Sheykhan
- Chemistry Department, University of Guilan, P.O. Box 41335-1914, 4193833697 Rasht, Iran
| | - Tahereh Ghaffari
- Chemistry Department, University of Guilan, P.O. Box 41335-1914, 4193833697 Rasht, Iran
| | - Elham Safari
- Chemistry Department, University of Guilan, P.O. Box 41335-1914, 4193833697 Rasht, Iran
| |
Collapse
|
9
|
Baghel AS, Jaiswal Y, Kumar A. Pd(II)-Catalyzed One-Pot Multiple C-C Bond Formation: En Route Synthesis of Succinimide-Fused Unsymmetrical 9,10-Dihydrophenanthrenes from Aryl Iodides and Maleimides. Org Lett 2020; 22:1908-1913. [PMID: 32065754 DOI: 10.1021/acs.orglett.0c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expeditious approach has been developed for the synthesis of succinimide-fused unsymmetrical 9,10-dihydrophenanthrenes from simple aryl iodides and maleimides. The developed transformation, overall proceeding with high regioselectivity via a cascade approach through palladium(II)-catalyzed Micheal-type addition/C-H activation/intramolecular cross-dehydrogenative coupling (ICDC)/C-H activation, allows formation of four fundamental carbon-carbon bonds in one-pot fashion. The reactions tolerate broad functional groups and satisfy the parameters of atom and step economy. Detailed mechanistic studies were carried out to support the proposed synthetic pathway.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Yogesh Jaiswal
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| |
Collapse
|
10
|
Price J, Albright E, Decken A, Eisler S. Thioarylmaleimides: accessible, tunable, and strongly emissive building blocks. Org Biomol Chem 2019; 17:9562-9566. [PMID: 31497835 DOI: 10.1039/c9ob01741k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of thioarylmaleimides was synthesized to investigate how variation of the thioaryl group can be used to control absorption and emission properties in solution and in the solid-state. Fine-tuning of the photochemical properties was found to be possible using this strategy, and a rainbow of colours and emission wavelengths are accessible in a single step from commercially available compounds.
Collapse
Affiliation(s)
- Jayden Price
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, CanadaE3B 5A3.
| | - Emily Albright
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, CanadaE3B 5A3.
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, CanadaE3B 5A3.
| | - Sara Eisler
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, CanadaE3B 5A3.
| |
Collapse
|
11
|
Xu JX, Wu XF. Palladium-Catalyzed Carbonylative Cyclization of Terminal Alkynes and Anilines to 3-Substituted Maleimides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian-Xing Xu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V.; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V.; Albert-Einstein-Straße 29a 18059 Rostock Germany
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| |
Collapse
|