1
|
Earl ADW, Li FF, Ma C, Furkert DP, Brimble MA. Stereoselective synthesis of the spirocyclic core of 13-desmethyl spirolide C using an aza-Claisen rearrangement and an exo-selective Diels-Alder cycloaddition. Org Biomol Chem 2023; 21:1222-1234. [PMID: 36633001 DOI: 10.1039/d2ob01992b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
13-Desmethyl spirolide C is a marine natural product of the cyclic imine class that demonstrates remarkable bioactivity against several biomarkers of Alzheimer's Disease, which renders its [7,6]-spirocyclic imine pharmacophore of significant synthetic interest. This work describes a facile and efficient synthesis of the [7,6]-spirocyclic core of 13-desmethyl spirolide C from inexpensive starting materials, featuring an aza-Claisen rearrangement to simultaneously set both stereocentres of the dimethyl moiety with complete atom economy, and a highly exo-selective Diels-Alder cycloaddition to construct the challenging contiguous tertiary and quaternary stereocentres of the spirocyclic core of 13-desmethyl spirolide C. A comprehensive study of the key Diels-Alder reaction was also performed to evaluate the stereoselectivity and reactivity of various functionalised dienes and protected lactam dienophiles, wherein the first successful exo-selective Diels-Alder cycloaddition to construct spirocyclic structures using a bromodiene and α-exo-methylene dienophiles is reported. This strategy not only establishes a more efficient stereoselective access to the spirocyclic core that can be used for the total synthesis of 13-desmethyl spirolide C, but also serves as a sound platform for convenient preparations of a range of spirocyclic analogues required for a comprehensive biological evaluation of this desirable pharmacophore.
Collapse
Affiliation(s)
- Andrew D W Earl
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Freda F Li
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Chao Ma
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Paulin EK, Leung E, Pilkington LI, Barker D. Synthesis and Anti-Proliferative Evaluation of Arctigenin Analogues with C-9' Derivatisation. Int J Mol Sci 2023; 24:ijms24021167. [PMID: 36674683 PMCID: PMC9866048 DOI: 10.3390/ijms24021167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Dibenzylbutyrolactone lignans (DBLs) are a class of natural products with a wide variety of biological activities. Due to their potential for the development of human therapeutic agents, DBLs have been subjected to various SAR studies in order to optimise activity. Previous reports have mainly considered changes on the aromatic rings and at the benzylic carbons of the compounds, whilst the effects of substituents in the lactone, at the C-9' position, have been relatively unexplored. This position has an unexploited potential for the development of novel dibenzyl butyrolactone derivatives, with previous preliminary findings revealing C-9'-hydroxymethyl analogues inducing programmed cell cycle death. Using the core structure of the bioactive natural product arctigenin, C-9' derivatives were synthesised using various synthetic pathways and with prepared derivatives providing more potent anti-proliferative activity than the C-9'-hydroxymethyl lead compound.
Collapse
Affiliation(s)
- Emily K. Paulin
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Lisa I. Pilkington
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- Correspondence: ; Tel.: +64-9-373-7599
| |
Collapse
|
3
|
Choudhary S, Gayyur, Ghosh N. Cu(II)-catalyzed [4 + 1] and [4 + 3] annulation reactions: a modular approach to N-aryl/alkyl substituted 2,5-diamidopyrroles and diazepines. Org Biomol Chem 2022; 20:7017-7021. [PMID: 36001012 DOI: 10.1039/d2ob01458k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot copper-catalyzed [4 + 1] annulation reaction of primary amines with ynamide-derived buta-1,3-diynes for the synthesis of 2,5-diamido bearing N-aryl/alkyl pyrroles in up to excellent yields has been showcased. A broad range of primary amines having highly reactive functional groups are well tolerated. Notably, sterically demanding aniline and primary aliphatic amines are excellent amine sources. Furthermore, the current protocol may yield structurally unique diazepine derivatives. The scale-up reaction and fruitful chemical elaboration of pyrrole motifs highlight the importance of this reaction.
Collapse
Affiliation(s)
- Shivani Choudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gayyur
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
4
|
Li J, Jiang LM, Cheng F, Zhou YJ, Duan DS, Zhu DY, Zhang K, Xiong Z, Wang SH. Total Synthesis of Sinopyrine B. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Sarkar S, Samanta R. Weakly Coordinating tert-Amide-Assisted Ru(II)-Catalyzed Synthesis of Azacoumestans via Migratory Insertion of Quinoid Carbene: Application in the Total Synthesis of Isolamellarins. Org Lett 2022; 24:4536-4541. [PMID: 35735263 DOI: 10.1021/acs.orglett.2c01556] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A weakly coordinating tert-amide-directed straightforward method was developed for the synthesis of azacoumestans using the corresponding azaheterocycle derivatives and diazonaphthoquinones under cheap Ru(II)-catalyzed conditions. The reaction proceeds via migratory insertion of quinoid carbene and subsequent Brønstead acid-mediated cyclization. The optimized C2-selective method offered a wide scope of important azaheterocycles. Bioactive natural products like isolamellarins A and B were synthesized via the developed protocol. Preliminary mechanistic studies highlighted the probable mechanistic pathway.
Collapse
Affiliation(s)
- Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
6
|
Li W, Shi R, Chen S, Zhang X, Peng W, Chen S, Li J, Xu XM, Zhu YP, Wang X. Synthesis of Diverse Pentasubstituted Pyrroles by a Gold(I)-Catalyzed Cascade Rearrangement-Cyclization of Tertiary Enamide. J Org Chem 2022; 87:3014-3024. [DOI: 10.1021/acs.joc.1c02837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ran Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sen Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuesi Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Si Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xueyuan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Ye S, Yang S, Ni L, Qiu W, Xu Q. Mechanism and kinetic study of Paal-Knorr reaction based on in-situ MIR monitoring. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120280. [PMID: 34454133 DOI: 10.1016/j.saa.2021.120280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
An in-depth understanding of reaction processes is beneficial to the development and quality control of chemical products. In this work, the mechanism and kinetics of the Paal-Knorr reaction for pyrrole derivatives are thoroughly studied using in-situ Fourier transform infrared (FTIR) spectroscopy. The hemiacetal amine intermediate, reactants, and products were identified and quantified by the treatment of real-time infrared spectra via chemometrics method and two-dimensional correlation spectroscopy (2DCOS) technique. Based on the IR quantitative models, influences of operating conditions on reaction processes were investigated, and the reaction kinetic model was built with kinetic parameters of two rate-limiting reaction steps calculated. This approach of analysis on the in-situ FTIR data demonstrated the ability to extract useful information on reaction components, especially the intermediate spectrum, from the confounding real-time IR data. The in-situ FTIR monitoring combined with the IR analysis methods is proved as a powerful tool for revealing the reaction mechanism and kinetics.
Collapse
Affiliation(s)
- Shuliang Ye
- Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, China.
| | - Shiying Yang
- Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Liwei Ni
- Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Wenze Qiu
- Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Qiyue Xu
- Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Gao P, Chen HJ, Bai ZJ, Zhao MN, Yang D, Wang J, Wang N, Du L, Guan ZH. IBX-Promoted Oxidative Cyclization of N-Hydroxyalkyl Enamines: A Metal-Free Approach toward 2,3-Disubstituted Pyrroles and Pyridines. J Org Chem 2020; 85:7939-7951. [DOI: 10.1021/acs.joc.0c00625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Huai-Juan Chen
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Zi-Jing Bai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Desuo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Juan Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Ning Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Lele Du
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
9
|
Silyanova EA, Samet AV, Salamandra LK, Khrustalev VN, Semenov VV. Formation of 3,4-Diarylpyrrole- and Pyrrolocoumarin Core of Natural Marine Products via Barton-Zard Reaction and Selective O-Demethylation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eugenia A. Silyanova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander V. Samet
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Lev K. Salamandra
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Victor N. Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya Street 117198 Moscow Russian Federation
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
10
|
Röckl JL, Imada Y, Chiba K, Franke R, Waldvogel SR. Dehydrogenative Anodic Cyanation Reaction of Phenols in Benzylic Positions. ChemElectroChem 2019. [DOI: 10.1002/celc.201801727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Johannes L. Röckl
- Institute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| | - Yasushi Imada
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| | - Kazuhiro Chiba
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum Universitätstraße 150 44801 Bochum Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| |
Collapse
|
11
|
Mandrekar KS, Kadam HK, Tilve SG. Domino Bischler-Napieralski - Michael Reaction and Oxidation - New Route to Coumarin-Pyrrole-Isoquinoline Fused Pentacycles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ketan S. Mandrekar
- Department of Chemistry; Goa University; 403206 Taleigao Plateau Goa India
| | - Hari K. Kadam
- Department of Chemistry; Goa University; 403206 Taleigao Plateau Goa India
| | - Santosh G. Tilve
- Department of Chemistry; Goa University; 403206 Taleigao Plateau Goa India
| |
Collapse
|