1
|
Manigandan S, Muthusamy A, Anand S, Nandhakumar R, Guna P. Azine Based Oligoesteric Chemosensors for Cu 2+ Ion Detection: Synthesis, Structural Characterization, and Theoretical Investigations. J Fluoresc 2024:10.1007/s10895-024-03750-5. [PMID: 38809471 DOI: 10.1007/s10895-024-03750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Synthesized monomer and its three oligoesters were characterized by techniques such as 1H, 13C{1H}, IR, UV, GPC and applied to chemosensor applications. A series of metal ions was studied with fluorophores to evaluate the sensitivity towards Cu2+ ion. The fluorophores results exhibit the selective and sensitive "Turn off" fluorescence response with Cu2+ ion in DMF/H2O (1:1, pH: 7.4, fluorophore: 5 µM) solution. Binding stoichiometry and binding constant of fluorophores were calculated using Stern-Volmer equation and Benesi-Hildebrand plots, respectively. Structure of fluorophores were studied using DFT, B3LYP/6-311 + + G(d,p) level basis set. Quenching mechanisms and electrical properties of fluorophores were explained with theoretical outcomes. Iodine doped and undoped oligoesters electrical conductivity were studied in solid-state and the conductivity was gradually increased with increase the contact time of iodine with oligoesters. At different frequencies and temperatures, the dielectric measurement was calculated using the two-probe method. Among all oligoesters, DMDAP exhibited high electrical conductivity and DMDMP has a higher dielectric constant value than other oligoesters.
Collapse
Affiliation(s)
- Subramani Manigandan
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
- Department of Chemical Engineering, Chonnam National University, 77 Yongbongro, Buk-Gu, Gwangju, 61186, South Korea
| | - Athianna Muthusamy
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India.
| | - Siddeswaran Anand
- Department of Chemistry, K.S.R. College of Engineering, KSR Kalvinagar, Tiruchengode, 637215, Tamil Nadu, India.
| | - Raju Nandhakumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-Be University), Karunya Nagar, Coimbatore, 641 114, Tamil Nadu, India.
| | - Prabakaran Guna
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-Be University), Karunya Nagar, Coimbatore, 641 114, Tamil Nadu, India
| |
Collapse
|
2
|
Shimizu M, Koizumi Y, Aikawa S, Fukushima Y. Colorimetric detection of glutathione by an anionic pyridylazo dye-based Cu2+ complex in the presence of a cationic polyelectrolyte. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
A Quinoxaline-Naphthaldehyde Conjugate for Colorimetric Determination of Copper Ion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092908. [PMID: 35566259 PMCID: PMC9105850 DOI: 10.3390/molecules27092908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
This work facilitates detection of bivalent copper ion by a simple Schiff base probe QNH based on a quinoxaline−naphthaldehyde framework. The detailed study in absorption spectroscopy and theoretical aspects and crystal study of the probe and probe−copper complex has been discussed. The detection limit of the probe in the presence of Cu2+ is 0.45 µM in HEPES−buffer/acetonitrile (3/7, v/v) medium for absorption study. The reversibility of the probe−copper complex has been investigated by EDTA. The selective visual detection of copper has been established also in gel form.
Collapse
|
4
|
Hao C, Zhang F, Jiang T, Ma Y, Ji W, Shi Z. Perylene tetra-(alkoxycarbonyl) based ‘turn-on’ fluorescent probe for selective recognition of Cu(Ⅱ) and its fluorescence imaging in living cells. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Fan T, Liu F, Fan C, Pu S. A dual-functional chemical sensor for the detection of Cu2+ and Cd2+ based on the photochromic diarylethene. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Perk B, Büyüksünetçi YT, Hakli Ö, Xue C, Li Q, Anik Ü. Centri‐Voltammetric GSH Detection with PDI‐C
4
SH as a Carrier Material. ChemistrySelect 2021. [DOI: 10.1002/slct.202103140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Benay Perk
- Mugla Sitki Kocman University Faculty of Science Chemistry Department Kotekli Mugla/ Turkey
| | | | - Özgül Hakli
- Mugla Sitki Kocman University Faculty of Science Chemistry Department Kotekli Mugla/ Turkey
| | - Chenming Xue
- Liquid Crystal Institute Kent State University Kent Ohio 44242 United States
| | - Quan Li
- Liquid Crystal Institute Kent State University Kent Ohio 44242 United States
| | - Ülkü Anik
- Mugla Sitki Kocman University Faculty of Science Chemistry Department Kotekli Mugla/ Turkey
- Sensors, Biosensors and Nano-Diagnostics Systems Lab Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
| |
Collapse
|
7
|
So H, Park S, Kim C. Construction of a Quinoline‐based Sequential Functioning Chromogenic Sensor for Copper(
II
) Ion and Biothiols: Its Application to Test Strips. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Haeri So
- Department of Fine Chemicals Seoul National University of Science and Technology (SNUT) Seoul 01178 Korea
| | - Soyoung Park
- Department of Fine Chemicals Seoul National University of Science and Technology (SNUT) Seoul 01178 Korea
| | - Cheal Kim
- Department of Fine Chemicals Seoul National University of Science and Technology (SNUT) Seoul 01178 Korea
| |
Collapse
|
8
|
Jiang C, Zhang C, Song J, Ji X, Wang W. Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119316. [PMID: 33418475 DOI: 10.1016/j.saa.2020.119316] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Abnormal levels of glutathione (GSH) and glutathione oxidized (GSSG) usually relates to some diseases, thus quantifying the amount of GSH or GSSG is of great significance. A label-free sensing assay based on the enzyme-mimicking property of Cytidine-Au nanoclusters (Cy-AuNCs) was demonstrated for colorimetric detection of GSH, GSSG and glutathione reductase (GR). Firstly, obvious blue color accompanied with an absorption peak at 652 nm was observed due to the high peroxidase-like activity of Cy-AuNCs toward 3,3',5,5'-tetramethylbenzidine (TMB). Then, in the presence of target, the mimetic activity of Cy-AuNCs could be strongly inhibited and used to achieve the visualization detection. The inhibition effect arose from the surface interaction between GSH and Cy-AuNCs. Linear relationships between absorbance response and concentration were obtained between 0 and 0.4 mM for GSH, 0-2.5 mM for GSSG and 0-0.2 U/mL for GR. The limit of detection (LOD) was calculated as low as 0.01 mM, 0.03 mM and 0.003 U/mL for GSH, GSSG and GR, respectively. Furthermore, the proposed method displayed rapid response, easy procedure and high selectivity.
Collapse
Affiliation(s)
- Cuifeng Jiang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Cong Zhang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Juan Song
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaojie Ji
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
9
|
Pundi A, Chang CJ, Chen YS, Chen JK, Yeh JM, Zhuang CS, Lee MC. An aniline trimer-based multifunctional sensor for colorimetric Fe 3+, Cu 2+ and Ag + detection, and its complex for fluorescent sensing of L-tryptophan. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119075. [PMID: 33096391 DOI: 10.1016/j.saa.2020.119075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The detection of metal ions and amino acids by the aniline oligomer-based receptor has not been reported yet, to the best of our knowledge. In this study, an efficient multifunctional cation-amino acid sensor (CAS) with aniline moiety and chiral thiourea binding site was synthesized by the reaction of aniline trimer and (S)-(+)-1-phenyl ethyl isothiocyanate. CAS can sense Fe3+, Cu2+, Ag+ ions, and L-tryptophan. These results can be recognized by the naked eye. The appropriate pH range for the quantitative analysis of Fe3+, Cu2+, and Ag+ by CAS in DMSO/water (30 vol% water) was evaluated. The interaction between CCS and metal ions was analyzed by 1H NMR titration. The detection limits of CAS for the Cu2+, Ag+, and Fe3+ were 0.214, 0.099, and 0.147 μM, respectively. Moreover, the CASCu2+ complex can act as a turn-on fluorescence sensor for L-tryptophan. On the contrary, there is no response upon the addition of other amino acids, such as L-histidine, L-proline, L-phenylalanine, L-threonine, L-methionine, L-tyrosine, and L-cystine to CASCu2+ complex.
Collapse
Affiliation(s)
- Arul Pundi
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC.
| | - Yi-Shao Chen
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd, Taipei 106, Taiwan, ROC
| | - Jui-Ming Yeh
- Department of Chemistry, Chung-Yuan Christian University, Chung Li, Taoyuan County 32023, Taiwan, ROC
| | - Cai-Shan Zhuang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Ming-Ching Lee
- Department of Surgery, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Taichung, 40705, Taiwan, ROC
| |
Collapse
|
10
|
Tashi L, Singhaal R, Nisa ZU, Devi S, Sheikh HN. Asparagine modified downconversion NaGdF 4:Dy 3+/Tb 3+ nanophosphor for selective and sensitive detection of Cu( ii) ion. NEW J CHEM 2021. [DOI: 10.1039/d1nj02685b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pure NaGdF4, NaGdF4:Dy3+, and Dy3+/Tb3+ co-doped NaGdF4 nanoparticles with different concentrations of Tb3+ (ranging from 3 to 20 mol%) were prepared via hydrothermal method.
Collapse
Affiliation(s)
- Lobzang Tashi
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| | - Richa Singhaal
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| | - Zaib ul Nisa
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| | - Swaita Devi
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| | - Haq Nawaz Sheikh
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| |
Collapse
|
11
|
A simple diaminomaleonitrile based molecular probe for selective detection of Cu(II) and Zn(II) ions in semi-aqueous medium. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Deng YH, Li RY, Zhang JQ, Wang YF, Li JT, Guo WT, Dong WK. A novel turn-on fluorogenic aldehyde-appended salamo-like copper(ii) complex probe for the simultaneous detection of S2O32− and GSH. NEW J CHEM 2021. [DOI: 10.1039/d1nj01445e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel salamo-like copper(ii) complex probe (ASC) behaves as a two-pronged sensor of S2O32− ions and GSH by a ‘turn-on’ fluorescence mechanism.
Collapse
Affiliation(s)
- Yun-Hu Deng
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Ruo-Yu Li
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Jin-Qiang Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Yue-Fei Wang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Jian-Ting Li
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Wen-Ting Guo
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Wei-Kui Dong
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| |
Collapse
|
13
|
Zhang Z, Pei K, Yan Z, Chen J. Facile synthesis of AgNPs@SNCDs nanocomposites as a fluorescent 'turn on' sensor for detection of glutathione. LUMINESCENCE 2020; 36:215-221. [PMID: 32830909 DOI: 10.1002/bio.3938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
The present study illustrates the facile synthesis of silver nanoparticles capped with sulfur and nitrogen co-doped carbon dots (AgNPs@SNCDs) nanocomposites and their application towards the sensitive and selective detection of glutathione (GSH) using a spectrofluorimetry method. SNCDs were synthesized using solvothermal treatment of cysteamine hydrochloride and p-phenylenediamine. The as-fabricated SNCDs were then utilized as capping and stabilizing agents for the preparation of AgNPs@SNCDs nanocomposites using wet chemistry. The size of AgNPs@SNCDs nanocomposites was characterized to be ~37.58 nm or even larger aggregates. Particularly, the quenched fluorescence of AgNPs@SNCDs nanocomposites could be significantly restored upon addition of GSH, and the colour of its solution changed to some extent. The fluorescence intensity ratio of AgNPs@SNCDs nanocomposites at ~450 nm and 550 nm was directly proportional to the GSH concentration within the ranges 8.35-66.83 μM and 66.83-200.5 μM, and the detection limit was 0.52 μM. Furthermore various common organic molecules had no obvious interference in the detection mode. The proposed nanosensor was successfully applied for GSH assay in actual water samples.
Collapse
Affiliation(s)
- Zhengwei Zhang
- School of Science, China Pharmaceutical University, Nanjing, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhengyu Yan
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Jianqiu Chen
- School of Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Sahu M, Kumar Manna A, Rout K, Mondal J, Patra GK. A highly selective thiosemicarbazone based Schiff base chemosensor for colorimetric detection of Cu2+ and Ag+ ions and turn-on fluorometric detection of Ag+ ions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119633] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Rha CJ, Lee H, Kim C. Simultaneous Detection of Cu
2+
and Co
2+
by a Water‐Soluble Carboxamide‐Based Colorimetric Chemosensor. ChemistrySelect 2020. [DOI: 10.1002/slct.201904318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chang Joo Rha
- Department of Fine Chem.Seoul National Univ. of Sci. and Tech. Seoul 01810 South Korea
| | - Hangyul Lee
- Department of Fine Chem.Seoul National Univ. of Sci. and Tech. Seoul 01810 South Korea
| | - Cheal Kim
- Department of Fine Chem.Seoul National Univ. of Sci. and Tech. Seoul 01810 South Korea
| |
Collapse
|
16
|
Chae JB, Yun D, Lee H, Lee H, Kim KT, Kim C. Highly Sensitive Dansyl-Based Chemosensor for Detection of Cu 2+ in Aqueous Solution and Zebrafish. ACS OMEGA 2019; 4:12537-12543. [PMID: 31460373 PMCID: PMC6682132 DOI: 10.1021/acsomega.9b00970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 05/04/2023]
Abstract
A new dansyl-based chemosensor (2-(4-((5-(dimethylamino)naphthalen-1-yl)sulfonyl)piperazin-1-yl)-N-(quinolin-8-yl)acetamide) (DC) for detecting Cu2+ was synthesized and characterized. DC showed great selectivity to Cu2+ by a fluorescent "on-off" detection method. Job plot, ESI-mass spectroscopy, and 1H NMR titration suggested a 1 to 1 binding mode between DC and Cu2+. The detection limit was determined to be 43 nM, which is greatly below the WHO guidelines. In addition, DC can be applied to real samples and zebrafish imaging. The fluorescence quenching mechanism was proposed as the enhancement of intramolecular charge transfer with calculations.
Collapse
Affiliation(s)
- Ju Byeong Chae
- Department
of Fine Chemistry and Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01186, Korea
| | - Dongju Yun
- Department
of Fine Chemistry and Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01186, Korea
| | - Hangyul Lee
- Department
of Fine Chemistry and Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01186, Korea
| | - Hyojin Lee
- Department
of Fine Chemistry and Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01186, Korea
| | - Ki-Tae Kim
- Department
of Fine Chemistry and Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01186, Korea
| | - Cheal Kim
- Department
of Fine Chemistry and Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01186, Korea
| |
Collapse
|
17
|
Highly chemoselective colorimetric/fluorometric dual-channel sensor with fast response and good reversibility for the selective and sensitive detection of Cu2+. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Liu N, Hao J, Chen L, Song Y, Wang L. Ratiometric fluorescent detection of Cu2+
based on dual-emission ZIF-8@rhodamine-B nanocomposites. LUMINESCENCE 2019; 34:193-199. [DOI: 10.1002/bio.3593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Juan Hao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Lili Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| |
Collapse
|
19
|
Suktanarak P, Ruangpornvisuti V, Suksai C, Tuntulani T, Leeladee P. Stabilisation of copper(i) polypyridyl complexes toward aerobic oxidation by zinc(ii) in combination with acetate anions: a facile approach and its application in ascorbic acid sensing in aqueous solution. Dalton Trans 2019; 48:997-1005. [DOI: 10.1039/c8dt03580f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new approach to stabilise Cu(i) complexes in aqueous solution using Zn(ii) acetate was demonstrated.
Collapse
Affiliation(s)
- Pattira Suktanarak
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | | | - Chomchai Suksai
- Department of Chemistry and Centre for Innovation in Chemistry
- Faculty of Science
- Burapha University
- Chonburi 20131
- Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Pannee Leeladee
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
20
|
Fluorescent detection of Zn2+ and Cu2+ by a phenanthrene-based multifunctional chemosensor that acts as a basic pH indicator. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Synthesis of new bis-benzylidene-hydrazides as a sensitive chromogenic sensor for naked-eye detection of CN¯ and AcO¯ ions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Hwang SM, Chae JB, Kim C. A Phenanthroimidazole-based Fluorescent Turn-Off Chemosensor for the Selective Detection of Cu2+
in Aqueous Media. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suh Mi Hwang
- Department of Fine Chemistry; SNUT (Seoul National University of Science and Technology); Seoul 01811 South Korea
| | - Ju Byeong Chae
- Department of Fine Chemistry; SNUT (Seoul National University of Science and Technology); Seoul 01811 South Korea
| | - Cheal Kim
- Department of Fine Chemistry; SNUT (Seoul National University of Science and Technology); Seoul 01811 South Korea
| |
Collapse
|
23
|
Kim MS, Jung JM, Ahn HM, Kim C. A simple colorimetric chemosensor for relay detection of Cu2+ and S2− in aqueous solution. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1420787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Seon Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, Republic of Korea
| | - Jae Min Jung
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, Republic of Korea
| | - Hye Mi Ahn
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, Republic of Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, Republic of Korea
| |
Collapse
|
24
|
Jang HJ, Ahn HM, Kim MS, Kim C. A highly selective colorimetric chemosensor for sequential detection of Fe 3+ and pyrophosphate in aqueous solution. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|