1
|
Lee CF, Brown CE, Nielsen AJ, Kim C, Livne-Bar I, Parsons PJ, Boldron C, Autelitano F, Weaver DF, Sivak JM, Reed MA. A Stereocontrolled Total Synthesis of Lipoxin B4 and its Biological Activity as a Pro-Resolving Lipid Mediator of Neuroinflammation. Chemistry 2022; 28:e202200360. [PMID: 35491534 PMCID: PMC9891714 DOI: 10.1002/chem.202200360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 02/03/2023]
Abstract
Two stereocontrolled, efficient, and modular syntheses of eicosanoid lipoxin B4 (LXB4 ) are reported. One features a stereoselective reduction followed by an asymmetric epoxidation sequence to set the vicinal diol stereocentres. The dienyne was installed via a one-pot Wittig olefination and base-mediated epoxide ring opening cascade. The other approach installed the diol through an asymmetric dihydroxylation reaction followed by a Horner-Wadsworth-Emmons olefination to afford the common dienyne intermediate. Finally, a Sonogashira coupling and an alkyne hydrosilylation/proto-desilylation protocol furnished LXB4 in 25 % overall yield in just 10 steps. For the first time, LXB4 has been fully characterized spectroscopically with its structure confirmed as previously reported. We have demonstrated that the synthesized LXB4 showed similar biological activity to commercial sources in a cellular neuroprotection model. This synthetic route can be employed to synthesize large quantities of LXB4 , enable synthesis of new analogs, and chemical probes for receptor and pathway characterization.
Collapse
Affiliation(s)
- C. Frank Lee
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Carla E. Brown
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alexander J. Nielsen
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Changmo Kim
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
- Department of Medicine University of Toronto Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
| | - Philip J. Parsons
- Molecular Sciences Research Hub, White City Campus, Imperial College London, London, United Kingdom
| | | | | | - Donald F. Weaver
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Fundamental Neurobiology Krembil Research Institute, University Health Network Toronto, Ontario, Canada
- Department of Chemistry University of Toronto Toronto, Ontario, Canada
- Department of Medicine University of Toronto Toronto, Ontario, Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology University of Toronto Toronto, Ontario, Canada
| | - Mark A. Reed
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hubert P, Seibel E, Beemelmanns C, Campagne J, Figueiredo RM. Stereoselective Construction of (
E,Z
)‐1,3‐Dienes and Its Application in Natural Product Synthesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000730] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pierre Hubert
- ICGM Univ Montpellier, CNRS, ENSCM Montpellier France
| | - Elena Seibel
- Hans-Knöll-Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | | | | | | |
Collapse
|
3
|
González‐Granda S, Méndez‐Sánchez D, Lavandera I, Gotor‐Fernández V. Laccase‐mediated Oxidations of Propargylic Alcohols. Application in the Deracemization of 1‐arylprop‐2‐yn‐1‐ols in Combination with Alcohol Dehydrogenases. ChemCatChem 2019. [DOI: 10.1002/cctc.201901543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sergio González‐Granda
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| | - Daniel Méndez‐Sánchez
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
- Current address: Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Iván Lavandera
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| |
Collapse
|
4
|
Abstract
We studied the synthesis of RvD1, a pro-resolving mediator. The intermediate containing vic-diol and enal functional groups was prepared via the oxidation of the γ,δ-epoxy alcohol followed by the epoxide ring opening in one pot. The C11-aldehyde in the resulting enal was converted to the trans iodo-olefin by reaction with TMSC(N2)Li and subsequent hydrozirconation using in situ generated Cp2Zr(H)Cl followed by iodination. The trans enynyl alcohol was synthesized by the reaction of the TMS-containing epoxy alcohol with lithium TMS-acetylide. Finally, two fragments were joined by the Sonogashira coupling, and the triple bond was reduced to afford RvD1 stereoselectively.
Collapse
Affiliation(s)
- Masao Morita
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | | | | |
Collapse
|
5
|
Guchhait S, Goswami RK. Studies toward the synthesis of macrotermycin C: stereoselective construction of the acyclic skeleton of the aglycon. Org Biomol Chem 2019; 17:9502-9509. [DOI: 10.1039/c9ob01999e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first asymmetric synthesis of the acyclic skeleton of the aglycon of macrotermycin C has been achieved in 17 linear steps with 5.7% overall yield following a convergent approach.
Collapse
Affiliation(s)
- Sandip Guchhait
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Rajib Kumar Goswami
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|