1
|
Bi J, Chen M, Nie P, Liu Y, Liu J, Du Y. Stereoselective Total Synthesis of Natural Decanolides Bellidisin C and Pinolidoxin. Molecules 2024; 29:5500. [PMID: 39683661 DOI: 10.3390/molecules29235500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
A divergent total synthesis of bioactive, naturally occurring decanolides, pinolidoxin and bellidisin C, was accomplished by taking advantage of chiral templates L-ribose and L-malic acid. In particular, bellidisin C, which is the first total synthesis so far, was achieved through a cascade reaction of reductive elimination and nucleophilic addition in a one-pot process and a sodium-alkoxide-promoted intramolecular lactonization as the key steps.
Collapse
Affiliation(s)
- Jingjing Bi
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang 464000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Minhao Chen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengpeng Nie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanfang Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
2
|
Liu Y, Zhao J, Hong R. Toward the Briarane Core via 1,3-Dipolar Cycloaddition. Org Lett 2024. [PMID: 38804559 DOI: 10.1021/acs.orglett.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The complete C20 framework of brianthein W was established, featuring hydroboration/allylation, to provide the C1-C2 quaternary/tertiary stereoarray with excellent stereocontrol. Intramolecular nitrile oxide cycloaddition (INOC) was adopted as the key transformation to establish the trans-fused 6/10-bicyclic ring system. Evolution of the second INOC event revealed the intricacies governing regioselectivity, which ultimately led to construction of the highly strained 10-membered carbocycle.
Collapse
Affiliation(s)
- Yichen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jiangang Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ran Hong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
3
|
Raynal L, Rose NC, Donald JR, Spicer CD. Photochemical Methods for Peptide Macrocyclisation. Chemistry 2021; 27:69-88. [PMID: 32914455 PMCID: PMC7821122 DOI: 10.1002/chem.202003779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new, diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocyclisation of peptides and small proteins. These constructs benefit from increased stability, structural rigidity and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, an overview of both the established and emerging methods for photochemical peptide macrocyclisation is presented, highlighting both the limitations and opportunities for further innovation in the field.
Collapse
Affiliation(s)
- Laetitia Raynal
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Nicholas C. Rose
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James R. Donald
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Christopher D. Spicer
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
4
|
Saridakis I, Kaiser D, Maulide N. Unconventional Macrocyclizations in Natural Product Synthesis. ACS CENTRAL SCIENCE 2020; 6:1869-1889. [PMID: 33274267 PMCID: PMC7706100 DOI: 10.1021/acscentsci.0c00599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/12/2023]
Abstract
Over the past several decades, macrocyclic compounds have emerged as increasingly significant therapeutic candidates in drug discovery. Their pharmacological activity hinges on their rotationally restricted three-dimensional orientation, resulting in a unique conformational preorganization and a high enthalpic gain as a consequence of high-affinity macrocycle-protein binding interactions. Synthetic access to macrocyclic drug candidates is therefore crucial. From a synthetic point of view, the efficiency of macrocyclization events commonly suffers from entropic penalties as well as undesired intermolecular couplings (oligomerization). Although over the past several decades ring-closing metathesis, macrolactonization, or macrolactamization have become strategies of choice, the toolbox of organic synthesis provides a great number of versatile transformations beyond the aforementioned. This Outlook focuses on a selection of examples employing what we term unconventional macrocyclizations toward the synthesis of natural products or analogues.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
- Research
Platform for Next Generation Macrocycles, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
5
|
Chang C, Geng J, Du Y, Lv Q, Dong Z, Liu J. Divergent total synthesis of aspinolides B, E and J. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Iwasaki T, Tajimi Y, Kameda K, Kingwell C, Wcislo W, Osaka K, Yamawaki M, Morita T, Yoshimi Y. Synthesis of 23-, 25-, 27-, and 29-Membered ( Z)-Selective Unsaturated and Saturated Macrocyclic Lactones from 16- and 17-Membered Macrocyclic Lactones and Bromoalcohols by Wittig Reaction, Yamaguchi Macrolactonization, and Photoinduced Decarboxylative Radical Macrolactonization. J Org Chem 2019; 84:8019-8026. [PMID: 31136179 DOI: 10.1021/acs.joc.9b00870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new strategy for the synthesis of 23-, 25-, 27-, and 29-membered ( Z)-selective unsaturated and saturated macrocyclic lactones from commercially available 16- and 17-membered macrocyclic lactones and bromoalcohols by Wittig reaction, Yamaguchi macrolactonization, and photoinduced decarboxylative radical macrolactonization is described. The position of the unsaturated part in the macrocyclic lactones can be controlled by changing the number of carbons in the starting materials. This protocol can provide facile access to the desired large-ring ( Z)-selective unsaturated and saturated macrocyclic lactones from simple starting materials.
Collapse
Affiliation(s)
- Tomoya Iwasaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering , University of Fukui , 3-9-1 Bunkyo , Fukui 910-8507 , Japan
| | - Yuka Tajimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering , University of Fukui , 3-9-1 Bunkyo , Fukui 910-8507 , Japan
| | - Kenta Kameda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering , University of Fukui , 3-9-1 Bunkyo , Fukui 910-8507 , Japan
| | - Callum Kingwell
- Department of Neurobiology and Behavior , Cornell University , Ithaca , New York 14853 , United States.,Smithsonian Tropical Research Institute , Luis Clement Avenue, Building 401 Tupper , Balboa Ancon, Panama 0843-03092 , Republic of Panama
| | - William Wcislo
- Smithsonian Tropical Research Institute , Luis Clement Avenue, Building 401 Tupper , Balboa Ancon, Panama 0843-03092 , Republic of Panama
| | - Kazuyuki Osaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering , University of Fukui , 3-9-1 Bunkyo , Fukui 910-8507 , Japan
| | - Mugen Yamawaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering , University of Fukui , 3-9-1 Bunkyo , Fukui 910-8507 , Japan
| | - Toshio Morita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering , University of Fukui , 3-9-1 Bunkyo , Fukui 910-8507 , Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering , University of Fukui , 3-9-1 Bunkyo , Fukui 910-8507 , Japan
| |
Collapse
|
7
|
Zheng K, Hong R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat Prod Rep 2019; 36:1546-1575. [DOI: 10.1039/c8np00094h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review covers selected examples of point chirality-forming macrocyclizations in natural product total synthesis in the past three decades.
Collapse
Affiliation(s)
- Kuan Zheng
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Ran Hong
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|