1
|
Li C, Dai T, Chen J, Chen M, Liang R, Liu C, Du L, McClements DJ. Modification of flavonoids: methods and influences on biological activities. Crit Rev Food Sci Nutr 2022; 63:10637-10658. [PMID: 35687361 DOI: 10.1080/10408398.2022.2083572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flavonoids are important active ingredients in plant-based food, which have many beneficial effects on health. But the low solubility, poor oral bioavailability, and inferior stability of many flavonoids may limit their applications in the food, cosmetics, and pharmaceutical industries. Structural modification can overcome these shortcomings to improve and extend the application of flavonoids. The study of how to modify flavonoids and the influence of various modifications on biological activity have drawn great interest in the current literature. In this review, the working principles and operating conditions of modification methods were summarized along with their potential and limitations in terms of operational safety, cost, and productivity. The influence of various modifications on biological activities and the structure-activity relationships of flavonoids derivatives were discussed and highlighted, which may give guidance for the synthesis of highly effective active agents. In addition, the safety of flavonoids derivatives is reviewed, and future research directions of flavonoid modification research are discussed.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Guangxi Academy of Agricultural Sciences, Agro-food Science and Technology Research Institute, Nanning, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingshun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqing Du
- China Academy of Tropical Agricultural Sciences, South Subtropical Crop Research Institute, Zhanjiang China
| | | |
Collapse
|
2
|
Song C, Wei XY, Qiu ZD, Gong L, Chen ZY, Ma Y, Shen Y, Zhao YJ, Wang WH, Lai CJS, Yang B. Exploring the resources of the genus Viscum for potential therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114233. [PMID: 34044077 DOI: 10.1016/j.jep.2021.114233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Viscum comprises approximately 100 species that are mainly distributed across Africa, Asia and Europe. The extracts and preparations of Viscum species are widely used as common complementary and alternative medicines in the treatment of rheumatism and cancer. AIM OF THE REVIEW This review aims to explore the medicinal properties of twelve species belonging to the genus Viscum for potential therapeutic applications. MATERIALS AND METHODS We collected online information (including PubMed, CNKI, Google Scholar, and Web of Science) from January 1915 to April 2021 and knowledge from classical books on Chinese herbal medicines available for 12 species of the genus Viscum, including Viscum coloratum (Kom.) Nakai, Viscum album L., Viscum articulatum Burm. f., Viscum liquidambaricola Hayata, Viscum ovalifolium DC., Viscum capitellatum Sm., Viscum cruciatum Sieber ex Boiss., Viscum nudum Danser, Viscum angulatum B.Heyne ex DC., Viscum tuberculatum A.Rich., Viscum multinerve Hayata, and Viscum diospyrosicola Hayata. RESULTS At least 250 different compounds have been reported across twelve Viscum species, including amino acid and peptides, alkaloids, phenolic acids, flavonoids, terpenoids, carbohydrates, fatty acids, lipids, and other types of compounds. In particular, for Viscum coloratum (Kom.) Nakai and Viscum album L., the plants, preparations, and bioactive components have been thoroughly reviewed. This has allowed to elucidate the role of active components, including lectins, viscotoxins, flavonoids, terpenoids, phenolic acids, and polysaccharides, in multiple bioactivities, such as anti-cancer, anti-rheumatism arthralgia, anti-inflammation, anti-cardiovascular diseases, enhancing immunity, and anti-chemotherapy side effects. We also evaluated quality control methods based on active compounds, in vivo exposure compounds, and discriminated chemical markers. CONCLUSIONS This is the first report to systematically review the pharmaceutical development history, chemical composition, clinical evidence, pharmacological activity, discriminated chemical markers, in vivo exposure, and quality control on twelve distinct species of Viscum plants with medicinal properties. The significant safety and efficacy, along with the minor side effects are constantly confirmed in clinics. The genus Viscum is thus an important medicinal resource that is worth exploring and developing in future pharmacological and chemical studies.
Collapse
Affiliation(s)
- Chuan Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xu-Ya Wei
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Zi-Dong Qiu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Li Gong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ze-Yan Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yu-Jun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Wei-Hao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|