1
|
Wang Y, Chen Y, Duan S, Cao Y, Sun W, Zhang M, Zhao D, Hu D, Dong J. Diastereoselective Three-Component 1,3-Dipolar Cycloaddition to Access Functionalized β-Tetrahydrocarboline- and Tetrahydroisoquinoline-Fused Spirooxindoles. Molecules 2024; 29:1790. [PMID: 38675610 PMCID: PMC11052326 DOI: 10.3390/molecules29081790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
A chemselective catalyst-free three-component 1,3-dipolar cycloaddition has been described. The unique polycyclic THPI and THIQs were creatively employed as dipolarophiles, which led to the formation of functionalized β-tetrahydrocarboline- and tetrahydroisoquinoline-fused spirooxindoles in 60-94% of yields with excellent diastereoselectivities (10: 1->99: 1 dr). This reaction not only realizes a concise THPI- or THIQs-based 1,3-dipolar cycloaddition, but also provides a practical strategy for the construction of two distinctive spirooxindole skeletons.
Collapse
Affiliation(s)
- Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Yu Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Shengli Duan
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Yiyang Cao
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Wenjin Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Mei Zhang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Delin Zhao
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Donghua Hu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Jianwei Dong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
2
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
3
|
Nawaz S, Huang Y, Bao X, Wei S, Wei X, Qu J, Wang B. Construction of a spiro[pyrazolone-4,2'-pyridoindole] scaffold via a [3 + 3] cycloaddition of 2-indolylmethanol with a 4-aminopyrazolone-derived azomethine ylide. Org Biomol Chem 2021; 19:8530-8538. [PMID: 34546283 DOI: 10.1039/d1ob01631h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work reports a facile [3 + 3] cycloaddition sequence of two important heterocyclic pharmacophores, pyrazolone and 2-indolylmethanol, integrated into a polycyclic hybrid scaffold. In this process, an in situ generated azomethine ylide obtained from 4-aminopyrazolone and benzaldehyde reacts with 2-indolylmethanols to offer spiro[pyrazolone-pyridoindole] scaffolds in high yields with excellent diastereoselectivities. Remarkably, the reaction is carried out at room temperature without any catalyst and base.
Collapse
Affiliation(s)
- Shah Nawaz
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. .,Department of Chemistry, Karakoram International University, Gilgit-Baltistan, 15100, Pakistan
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Xiaoze Bao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| |
Collapse
|
4
|
Asad M, Arshad MN, Asiri AM, Khan SA, Rehan M, Oves M. Synthesis, Characterization, Molecular Docking and Antimicrobial Activity of Novel Spiropyrrolidine Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1936083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman A. Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdul-Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
6
|
Liu S, Zhao T, Qu J, Wang B. Expedient Synthesis of 1,4‐Benzodiazepines via a Tandem Condensation/[1,5]‐Hydride Transfer/Cyclization Process. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800781] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and TechnologyDalian University of Technology Dalian 116024 People's Republic of China
| | - Tuan Zhao
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and TechnologyDalian University of Technology Dalian 116024 People's Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and TechnologyDalian University of Technology Dalian 116024 People's Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and TechnologyDalian University of Technology Dalian 116024 People's Republic of China
| |
Collapse
|
7
|
Liu S, Zhang W, Qu J, Wang B. Engaging 2-methyl indolenines in a tandem condensation/1,5-hydride transfer/cyclization process: construction of a novel indolenine–tetrahydroquinoline assembly. Org Chem Front 2018. [DOI: 10.1039/c8qo00875b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient BF3·Et2O-catalyzed diastereoselective tandem condensation/1,5-hydride transfer/cyclization strategy for the synthesis of a novel indolenine–tetrahydroquinoline assembly was reported.
Collapse
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|