1
|
Wu J, Niu J, Liu H, Xie R, Zhu N. Conversion of atmospheric CO 2 catalyzed by thiolate-based ionic liquids under mild conditions: efficient synthesis of 2-oxazolidinones. Org Biomol Chem 2024; 22:8138-8143. [PMID: 39149914 DOI: 10.1039/d4ob01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Thiolate-based ionic liquids, specifically the catalyst [TBP][2-Tp], have demonstrated their efficiency in catalyzing the reaction of CO2 with propargylic amine. This novel synthetic method can be used to synthesize various 2-oxazolidinone derivatives with high yields. The catalyst can be easily regenerated and reused without any decline in its catalytic activity. Experimental and spectroscopic investigations have confirmed that the high activity of [TBP][2-Tp] is attributed to the synergistic effect of its S and N sites in activating CO2, rather than depending solely on basicity to activate the amino group of propargylic amine. These findings highlight the significant potential of thiolate-based ionic liquids for applications in CO2 activation and conversion.
Collapse
Affiliation(s)
- Jiakai Wu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Junping Niu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Hui Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Ruijun Xie
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| |
Collapse
|
2
|
Hu YL, Liu XB, Yang LL. Novel and highly efficient transformation of carbon dioxide into 2-oxazolidinones over Al-MCM-41 mesoporous-supported ionic liquids. ENVIRONMENTAL TECHNOLOGY 2024; 45:1855-1869. [PMID: 36476067 DOI: 10.1080/09593330.2022.2156816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A type of Al-MCM-41 supported dual imidazolium ionic liquids were constructed and efficiently used as catalysts for the synthesis of 2-oxazolidinones from epoxides, amines, and CO2. The influence of the different catalysts and reaction parameters on the catalytic behaviours was investigated. Al-MCM-41@ILTiCl5 was identified as the most excellent catalyst because it could efficiently promote the three-component cycloaddition of CO2, epoxide, and amines to form the corresponding 2-oxazolidinones in high to excellent yields (84∼96%) with excellent selectivities (98∼99.7%). In addition, the recovery and reuse performances of Al-MCM-41@ILTiCl5 were examined. The catalyst could be recovered by simple filtration and reused six times without a change in the catalytic activity. Green reaction conditions, operational simplicity, feasibility, and sustainability of the functionalized catalyst are the main highlights of the present protocol.
Collapse
Affiliation(s)
- Yu Lin Hu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, People's Republic of China
| | - Xiao Bing Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, People's Republic of China
| | - Li Li Yang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, People's Republic of China
| |
Collapse
|
3
|
The tandem reaction of propargylamine/propargyl alcohol with CO2: Reaction mechanism, catalyst activity and product diversity. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Phatake VV, Gokhale TA, Bhanage BM. [TBDH][HFIP] ionic liquid catalyzed synthesis of quinazoline-2,4(1H,3H)-diones in the presence of ambient temperature and pressure. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Mechanisms and reaction conditions of CO2 with o-aminobenzonitrile for the synthesis of quinazoline-2,4-dione. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Pirdelzendeh D, Mamaghani M, Shirini F, Sheykhan M. Copper incorporated hydroxyapatite encapsulated Kit-6 mesoporous silica as a novel and recoverable nanocatalyst for the synthesis of quinazolines. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Leong BX, Teo YC, Condamines C, Yang MC, Su MD, So CW. A NHC-Silyliumylidene Cation for Catalytic N-Formylation of Amines Using Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bi-Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yeow-Chuan Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Cloé Condamines
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
8
|
Chen F, Tao S, Deng QQ, Wei D, Liu N, Dai B. Binuclear Tridentate Hemilabile Copper(I) Catalysts for Utilization of CO2 into Oxazolidinones from Propargylic Amines. J Org Chem 2020; 85:15197-15212. [DOI: 10.1021/acs.joc.0c02065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sheng Tao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Qian-Qian Deng
- College of Chemistry, Center of Computational Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Donghui Wei
- College of Chemistry, Center of Computational Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Bin Dai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
9
|
|
10
|
Sonzini P, Damiano C, Intrieri D, Manca G, Gallo E. A Metal‐Free Synthesis of
N
‐Aryl Oxazolidin‐2‐Ones by the One‐Pot Reaction of Carbon Dioxide with
N
‐Aryl Aziridines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Paolo Sonzini
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| | - Caterina Damiano
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| | - Daniela Intrieri
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti OrganoMetalliciICCOM-CNR Via Madonna del Piano 10 I-50019 Sesto Fiorentino Italy
| | - Emma Gallo
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| |
Collapse
|
11
|
He X, Yao XY, Chen KH, He LN. Metal-Free Photocatalytic Synthesis of exo-Iodomethylene 2-Oxazolidinones: An Alternative Strategy for CO 2 Valorization with Solar Energy. CHEMSUSCHEM 2019; 12:5081-5085. [PMID: 31671246 DOI: 10.1002/cssc.201902417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/11/2019] [Indexed: 06/10/2023]
Abstract
A visible-light-promoted metal-free carboxylative cyclization of propargylic amines with CO2 was shown to offer exo-iodomethylene 2-oxazolidinones. Incorporation of both CO2 and iodo moieties into these compounds was realized efficiently. The mechanism study revealed that this carboxylative cyclization proceeds through a radical pathway. Notably, the iodine-functionalized 2-oxazolidinone as a platform molecule could be easily converted into a wide range of value-added chemicals through Buchwald-Hartwig, Suzuki, Sonogashira, photocatalytic ene, and photoreduction reactions. As a result, the plentiful downstream transformations remarkably enhance the range of chemicals derived from CO2 and open a potential avenue for CO2 functionalization to circumvent energy challenges in this field.
Collapse
Affiliation(s)
- Xing He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xiang-Yang Yao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Kai-Hong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Liang-Nian He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
12
|
Zhou Z, Chen K, He L. Efficient and Recyclable Cobalt(II)/Ionic Liquid Catalytic System for CO
2
Conversion to Prepare 2‐Oxazolinones at Atmospheric Pressure. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi‐Hua Zhou
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of ChemistryNankai University Tianjin 300071 China
| | - Kai‐Hong Chen
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of ChemistryNankai University Tianjin 300071 China
| | - Liang‐Nian He
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
13
|
Yu Z, Xu F, Li Y, Konno H, Li H, Yang S. Tetraethylammonium Fluoride-mediated A Green Hydrogen Transfer Process for Selective Reduction of Biomass-derived Aldehydes. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190830115519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogenation of furfural (FUR) to furfuryl alcohol (FFA) is a key step and one of the representative
examples for comprehensive utilization of biomass, while relatively harsh conditions are
typically required to achieve satisfactory results using molecular hydrogen, formic acid, or alcohol as
H-donor over expensive metal catalysts. In this work, a new and benign reaction system, composed of
green and cheap tetraethylammonium fluoride and polymethylhydrosiloxane (PMHS), is developed to
be efficient for transfer hydrogenation of bio-based FUR to high-value FFA under mild conditions.
After reacting at 35 ℃ for 0.5 h, 94.9% FUR conversion and 92.3% yield of FFA could be achieved.
This protocol is also widely applicable to the selective reduction of various aromatic aldehydes, giving
relevant alcohols in high yields of 81.0-99.9% at 35-60 °C within 30-120 min. Moreover, the mechanism
of fluoride-activated hydrosilylation was demonstrated to be responsible for the efficient transfer
hydrogenation process.
Collapse
Affiliation(s)
- Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Fusheng Xu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, 992- 8510, Japan
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
14
|
Mu X, Han L, Liu T. How and Why a Protic Ionic Liquid Efficiently Catalyzes Chemical Fixation of CO2 to Quinazoline-2,4-(1H,3H)-diones: Electrostatically Controlled Reactivity. J Phys Chem A 2019; 123:9394-9402. [DOI: 10.1021/acs.jpca.9b07838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xueli Mu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China
| | - Lingli Han
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China
| | - Tao Liu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| |
Collapse
|
15
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C−N Bond Forming Reactions of Amines with CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
16
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO 2. Angew Chem Int Ed Engl 2019; 59:1002-1017. [PMID: 31364789 DOI: 10.1002/anie.201906942] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Organocatalysts promote a range of C-N bond forming reactions of amines with CO2 . Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR'NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2 , internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H-bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H-bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline-2,4-diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.
Collapse
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
17
|
Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 2019. [DOI: 10.3390/catal9060511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon dioxide produced by human activities is one of the main contributions responsible for the greenhouse effect, which is modifying the Earth’s climate. Therefore, post-combustion CO2 capture and its conversion into high value-added chemicals are integral parts of today’s green industry. On the other hand, carbon dioxide is a ubiquitous, cheap, abundant, non-toxic, non-flammable and renewable C1 source. Among CO2 usages, this review aims to summarize and discuss the advances in the reaction of CO2, in the synthesis of cyclic carbonates, carbamates, and ureas appeared in the literature since 2017.
Collapse
|
18
|
Cu(I)/Ionic Liquids Promote the Conversion of Carbon Dioxide into Oxazolidinones at Room Temperature. Molecules 2019; 24:molecules24071241. [PMID: 30934963 PMCID: PMC6480545 DOI: 10.3390/molecules24071241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022] Open
Abstract
Recently, the efficient chemical fixation of carbon dioxide (CO₂) into high value chemicals without using noble metal catalysts has become extremely appealing from the viewpoint of sustainable chemistry. In this work, a one-pot three component reaction of propargylic alcohols, anines and CO₂ that can proceed in an atom economy and environmentally benign manner by combination of CuI and tetrabutylphosphonium imidazol ([P4444][Im]) as a catalyst was described. Catalysis studies indicate that this catalytic system is an effective catalyst for the conversion of CO₂ into oxazolidinones at room temperature and ambient pressure without any solvent. The results provide a useful way to design novel noble metal-free catalyst systems for the transformation of CO₂ into other valuable compounds.
Collapse
|
19
|
Li JY, Song QW, Zhang K, Liu P. Catalytic Conversion of Carbon Dioxide through C-N Bond Formation. Molecules 2019; 24:molecules24010182. [PMID: 30621311 PMCID: PMC6337678 DOI: 10.3390/molecules24010182] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
From the viewpoint of green chemistry and sustainable development, it is of great significance to synthesize chemicals from CO₂ as C₁ source through C-N bond formation. During the past several decade years, many studies on C-N bond formation reaction were involved, and many efforts have been made on the theory. Nevertheless, several great challenges such as thermodynamic limitation, low catalytic efficiency and selectivity, and high pressure etc. are still suffered. Herein, recent advances are highlighted on the development of catalytic methods for chemical fixation of CO₂ to various chemicals through C-N bond formation. Meanwhile, the catalytic systems (metal and metal-free catalysis), strategies and catalytic mechanism are summarized and discussed in detail. Besides, this review also covers some novel synthetic strategies to urethanes based on amines and CO₂. Finally, the regulatory strategies on functionalization of CO₂ for N-methylation/N-formylation of amines with phenylsilane and heterogeneous catalysis N-methylation of amines with CO₂ and H₂ are emphasized.
Collapse
Affiliation(s)
- Jing-Yuan Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Qing-Wen Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Kan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Ping Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| |
Collapse
|