1
|
Geniller L, Souche C, Taillefer M, Jaroschik F, Prieto A. Decarboxylative Xanthylation under Photocatalytic Conditions. Org Lett 2024; 26:9574-9579. [PMID: 39447190 DOI: 10.1021/acs.orglett.4c03616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Xanthates are widely used in organic synthesis for the construction of various molecules and have numerous applications as bioactive compounds. Here, we present their preparation via a straightforward photocatalytic decarboxylative xanthylation process involving readily available oxime esters and xanthate dimers. This approach provides access to a wide variety of xanthate compounds in moderate to good yields, including xanthates derived from relevant pharmaceutical and bioactive molecules.
Collapse
Affiliation(s)
- Lilian Geniller
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), 34000 Montpellier, France
| | - Céleste Souche
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), 34000 Montpellier, France
| | - Marc Taillefer
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), 34000 Montpellier, France
| | - Florian Jaroschik
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), 34000 Montpellier, France
| | - Alexis Prieto
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), 34000 Montpellier, France
| |
Collapse
|
2
|
Tan S, Dorokhov VS, White LV, Zard SZ. Synthesis of 4-Alkyl-2-chloro Imidazoles Using Intermolecular Radical Additions. Org Lett 2024; 26:5989-5994. [PMID: 38975858 DOI: 10.1021/acs.orglett.4c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Here, we report an intermolecular radical addition-based reaction sequence that permits preparation of functionalized imidazoles via a 5-step/3-pot procedure. In contrast to traditional, transition-metal mediated protocols, which generally provide access to 2-substituted imidazoles, the strategy described here allows incorporation of a structurally diverse range of complex alkyl side chains at the 4-position. This work demonstrates that intermolecular free-radical addition reactions are a powerful alternative to traditional methods used to synthesize medicinally important heterocyclic frameworks.
Collapse
Affiliation(s)
- Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| | - Valentin S Dorokhov
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| |
Collapse
|
3
|
Flores-Bernal G, Miranda LD. A Copper-Mediated Radical α-Heteroarylation of Nitriles with Azobis(alkylcarbonitriles). Org Lett 2024; 26:1128-1133. [PMID: 38315447 PMCID: PMC10877592 DOI: 10.1021/acs.orglett.3c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
A new practical method has been developed for the α-heteroarylation of aliphatic nitriles with heteroarenes and azobis(alkylcarbonitriles) using Cu(OAc)2 as an oxidizing agent. This method allows the easy construction of nitrile-, aryl-, and dialkyl-bearing quaternary carbon centers from readily available building blocks, without requiring prefunctionalization steps. This reaction is based on adding cyanodialkyl radicals onto heteroarenes, including benzofurans, furans, pyrroles, and indoles. The resulting α-heteroaryl nitriles are useful synthetic intermediates and pharmacophores in biologically active molecules.
Collapse
Affiliation(s)
- Gustavo
G. Flores-Bernal
- Department of Organic Chemistry,
Instituto de Química, Universidad Nacional Autónoma
de México, Circuito Exterior, Ciudad
Universitaria, 04510 Mexico City, Mexico
| | - Luis D. Miranda
- Department of Organic Chemistry,
Instituto de Química, Universidad Nacional Autónoma
de México, Circuito Exterior, Ciudad
Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
4
|
Zhou T, Chen H, Liu Y, Wang H, Yan Q, Wang W, Chen F. Visible-Light-Promoted Xanthate-Transfer Cyclization Reactions of Unactivated Olefins under Photocatalyst- and Additive-Free Conditions. J Org Chem 2022; 87:15582-15597. [DOI: 10.1021/acs.joc.2c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tongyao Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hang Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Fregoso-López D, Miranda LD. Visible-Light Mediated Radical Alkylation of Flavones: A Modular Access to Nonsymmetrical 3,3″-Biflavones. Org Lett 2022; 24:8615-8620. [DOI: 10.1021/acs.orglett.2c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Daniela Fregoso-López
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis D. Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
6
|
Abstract
A versatile strategy for the α-substitution of enones through the formal fusion between enones and unactivated alkenes is described. It relies on the formation and use of α-xanthyl-β-hydroxy ketones, which can be considered as synthetic equivalents of the high energy and difficult to tame alkenyl radicals. The process, which can often be accomplished one-pot, could be extended in one case to an α,β-unsaturated ester.
Collapse
Affiliation(s)
- Bartosz Bieszczad
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|
7
|
Solvent-controlled photosensitized divergent C3-ethoxycarbonylmethylation/hydroxyalkylation of imidazo[1,2-a]pyridines with diethyl bromomalonate. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Hernández‐Lladó P, Garrec K, Schmitt DC, Burton JW. Transition Metal‐Free, Visible Light‐Mediated Radical Cyclisation of Malonyl Radicals onto 5‐Ring Heteroaromatics. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pol Hernández‐Lladó
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Kilian Garrec
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Daniel C. Schmitt
- Medicine Design Pfizer Worldwide Research Development and Medical Groton Connecticut 06340 United States
| | - Jonathan W. Burton
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
9
|
Deng Y, Yang T, Wang H, Yang C, Cheng L, Yin SF, Kambe N, Qiu R. Recent Progress on Photocatalytic Synthesis of Ester Derivatives and Reaction Mechanisms. Top Curr Chem (Cham) 2021; 379:42. [PMID: 34668085 DOI: 10.1007/s41061-021-00355-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
Esters and their derivatives are distributed widely in natural products, pharmaceuticals, fine chemicals and other fields. Esters are important building blocks in pharmaceuticals such as clopidogrel, methylphenidate, fenofibrate, travoprost, prasugrel, oseltamivir, eszopiclone and fluticasone. Therefore, esterification reaction becomes more and more popular in the photochemical field. In this review, we highlight three types of reactions to synthesize esters using photochemical strategies. The reaction mechanisms involve mainly single electron transfer, energy transfer or other radical procedures.
Collapse
Affiliation(s)
- Yiqiang Deng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hui Wang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Chong Yang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Lihua Cheng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Renhua Qiu
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
10
|
López-Mendoza P, Miranda LD. Photocatalytic xanthate-based radical addition/cyclization reaction sequence toward 2-biphenyl isocyanides: synthesis of 6-alkylated phenanthridines. Org Biomol Chem 2021; 18:3487-3491. [PMID: 32347280 DOI: 10.1039/d0ob00136h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A photocatalytic xanthate-based radical addition/cyclization reaction cascade toward 2-biphenylisocyanides is described as a practical and modular approach to 6-alkylated phenanthridines. The use of xanthates as radical precursors allowed the synthesis of diversely 6-substituted phenanthridines. Electrophilic radicals derived from nitriles, aromatic and aliphatic ketones, malonates, and amide derivatives, as well as radicals derived from phthalimidomethyl and benzylic derivatives were successfully introduced. The reaction proceeds under mild conditions without a stoichiometric amount of oxidant. Thirty novel phenanthridine scaffolds were synthesized with yields ranging from 24 to 76%.
Collapse
Affiliation(s)
- Pedro López-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | | |
Collapse
|
11
|
Miranda LD, García-Ramírez J. Peroxide-Mediated Oxidative Radical Cyclization to the Quinazolinone System: Efficient Syntheses of Deoxyvasicinone, Mackinazolinone and (±)-Leucomidine C. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAn efficient protocol for obtaining fused quinazolinones through an oxidative free-radical cyclization under metal- and tin-free conditions is described. The oxidative cyclization of various N-3-ω-iodoalkyl derivatives to provide tricyclic systems using dicumyl peroxide as the sole reagent is studied. The method then is employed for the syntheses of 5-, 6-, and 7-membered fused quinazolinone analogues, including the natural products deoxyvasicinone and mackinazolinone. A xanthate-based oxidative radical cascade addition/cyclization process that allows the production of new menthol- and testosterone-quinazolinone conjugates, as well as the first total synthesis of leucomidine C, are also reported.
Collapse
|
12
|
Chaubey NR, Kapdi AR, Maity B. Organophotoredox-Catalyzed C–H Alkylation of Imidazoheterocycles with Malonates: Total Synthesis of Zolpidem. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractOrganophotocatalytic C–H bond functionalization has attracted a lot of attention in the past several years due to the possibility of catalyzing reactions in a metal- and peroxide-free environment. Continuing on these lines, an organophotoredox-catalyzed C–H functionalization of imidazo[1,2-a]pyridines and related heterocycles with bromomalonates under mild conditions is reported, providing excellent yields of the products at room temperature. This is the first report involving malonates as coupling partners leading to the synthesis of a range of functionalized products including total synthesis of zolpidem, a sedative-hypnotic drug molecule.
Collapse
Affiliation(s)
| | - Anant R. Kapdi
- Institute of Chemical Technology, Department of Chemistry
| | - Biswanath Maity
- Translational Cell Biology Unit, Centre of Biomedical Research
| |
Collapse
|
13
|
|
14
|
Veltri L, Prestia T, Russo P, Clementi C, Vitale P, Ortica F, Gabriele B. Synthesis of Luminescent Fused Imidazole Bicyclic Acetic Esters by a Multicomponent Palladium Iodide‐Catalyzed Oxidative Alkoxycarbonylation Approach. ChemCatChem 2020. [DOI: 10.1002/cctc.202001693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucia Veltri
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende CS Italy
| | - Tommaso Prestia
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende CS Italy
| | - Patrizio Russo
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende CS Italy
| | - Catia Clementi
- Dipartimento di Chimica, Biologia e Biotecnologie Sezione di Chimica Fisica Università degli Studi di Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Paola Vitale
- Department of Pharmacy – Pharmaceutical Sciences University of Bari “Aldo Moro” Via E. Orabona 4 70125 Bari Italy
| | - Fausto Ortica
- Dipartimento di Chimica, Biologia e Biotecnologie Sezione di Chimica Fisica Università degli Studi di Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende CS Italy
| |
Collapse
|
15
|
Zard SZ. The Xanthate Route to Indolines, Indoles, and their Aza Congeners. Chemistry 2020; 26:12689-12705. [DOI: 10.1002/chem.202001341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Samir Z. Zard
- Laboratoire de Synthèse Organique, UMR 7652 Ecole Polytechnique 91128 Palaiseau France
| |
Collapse
|
16
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
17
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
18
|
Kaga A, Wu X, Lim JYJ, Hayashi H, Lu Y, Yeow EKL, Chiba S. Degenerative xanthate transfer to olefins under visible-light photocatalysis. Beilstein J Org Chem 2018; 14:3047-3058. [PMID: 30591827 PMCID: PMC6296426 DOI: 10.3762/bjoc.14.283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 01/14/2023] Open
Abstract
The degenerative transfer of xanthates to olefins is enabled by the iridium-based photocatalyst [Ir{dF(CF3)ppy}2(dtbbpy)](PF6) under blue LED light irradiation. Detailed mechanistic investigations through kinetics and photophysical studies revealed that the process operates under a radical chain mechanism, which is initiated through triplet-sensitization of xanthates by the long-lived triplet state of the iridium-based photocatalyst.
Collapse
Affiliation(s)
- Atsushi Kaga
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiangyang Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Joel Yi Jie Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hirohito Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|