1
|
Lefevre A, Guillot R, Kouklovsky C, Vincent G. Ferrocene-Mediated Electrochemical Polycyclization of Malonates. Org Lett 2024; 26:7403-7407. [PMID: 39189952 DOI: 10.1021/acs.orglett.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report access to the core of biologically relevant aromatic abietane diterpenoids and to the formal synthesis of podocarpic and lambertic acids or γ-lactones via an electrochemical bicyclization process initiated by the ferrocene-mediated anodic oxidation of a malonate via single electron-transfer. This approach permits escaping the use of excess of oxidants such as Mn(OAc)3 and the associated complicated purification.
Collapse
Affiliation(s)
- Antoine Lefevre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
2
|
Biçer E, Yılmaz M. Recent Advances in Manganese(III)-Assisted Radical Cyclization for the Synthesis of Natural Products: A Comprehensive Review. Molecules 2024; 29:2264. [PMID: 38792125 PMCID: PMC11123744 DOI: 10.3390/molecules29102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Natural products play an important part in synthetic chemistry since they have many pharmacological properties and are used as active drug compounds in pharmaceutical chemistry. However, synthesis of these complex molecules is difficult due to the requirement of various synthetic steps, which include highly regio- and stereoselectivity. Therefore, oxidative radical cyclization assisted by manganese(III) acetate serves as an important step in obtaining spiro-, tricyclic, tetracyclic, and polycyclic derivatives of these compounds. Manganese(III)-based reactions offer a single-step regio- and stereoselective cyclizations and α-acetoxidations, reducing the number of synthetic steps. Also, the manganese(III)-mediated oxidative free radical cyclization method has been successfully applied for the synthesis of cyclic structures found in many natural products. This article presents a broad overview of manganese(III)-based radical reactions of natural products as a key step in overall synthesis. The authors have classified natural product synthesis processes assisted by manganese(III) acetate as intermolecular, intramolecular, oxidation, acetoxidation, aromatization, and polymerization reactions, respectively.
Collapse
Affiliation(s)
- Emre Biçer
- Faculty of Engineering and Natural Sciences, Sivas University of Science and Technology, 58010 Sivas, Türkiye
| | - Mehmet Yılmaz
- Department of Chemistry, Faculty of Art and Sciences, Kocaeli University, 41380 Umuttepe, Türkiye;
| |
Collapse
|
3
|
Liu W, Winssinger N. Synthesis of α-exo-Methylene-γ-butyrolactones: Recent Developments and Applications in Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1577-6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe α-exo-methylene-γ-butyrolactone moiety is present in a vast array of structurally diverse natural products and is often central to their biological activity. In this short review, we summarize new approaches to α-exo-methylene-γ-butyrolactones developed over the past decade as well as their applications in total synthesis.1 Introduction2 Approaches to α-exo-Methylene-γ-butyrolactones2.1 Enantioselective Synthesis via Lactonization Approaches2.2 Enantioselective Halolactonizations2.3 Enantioselective Barbier-Type Allylation2.4 C–H Insertion/Olefination Sequences2.5 Alkene Cyclization2.6 Strain-Driven Dyotropic Rearrangement3 β-(Hydroxymethylalkyl)-α-exo-methylene-γ-butyrolactones4 Applications in Total Synthesis4.1 Sesquiterpene Lactones4.2 Lignans4.3 Other Monocyclic Natural Products4.4 Choice of Methodology in Recent Total Syntheses5 Summary and Outlook
Collapse
|
4
|
Bhat BA, Rashid S, Mehta G. Progress in the Total Synthesis of Natural Products Embodying Diverse Furofuranone Motifs: A New Millennium Update. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bilal A. Bhat
- CSIR-Medicinal Chemistry Division Indian Institute of Integrative Medicine Sanat Nagar Srinagar 190005 India
- Academy of Scientific and Innovative Research CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Showkat Rashid
- CSIR-Medicinal Chemistry Division Indian Institute of Integrative Medicine Sanat Nagar Srinagar 190005 India
- Academy of Scientific and Innovative Research CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- School of Chemistry, University of Hyderabad Hyderabad 500046 India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
5
|
Nakamura T, Supratman U, Harneti D, Maharani R, Koseki T, Shiono Y. New compounds from Japanese oak wilt disease-associated fungus Raffaelea quercivora. Nat Prod Res 2020; 35:5304-5310. [PMID: 32290697 DOI: 10.1080/14786419.2020.1753054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two new compounds, a new lactone, quercilactone A (1), and (17R)-hydroxynafuredin (5), as well as five known compounds, scytalone (2), 3S,4R-hydoxy-scytalone (3), nafuredin (4), (+)-(3R,5R)-3-hydroxy-5-decanolide (6) and 3-ethyl-4-hydroxy-6-methyl-2H-pyran-2-one (7), were isolated from Raffaelea quercivora, a fungus that causes Japanese oak wilt disease. The structures of these compounds were determined by 1D and 2D NMR spectroscopic analyses. The absolute configuration at C-17 of 5 was determined to be R by the modified Mosher's method. Compounds 1, 2, and 7 exhibited weak phytotoxic activity in lettuce seedlings at a concentration of 100 μg mL-1.
Collapse
Affiliation(s)
- Tomoki Nakamura
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Takuya Koseki
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Yoshihito Shiono
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
6
|
Howarth A, Ermanis K, Goodman JM. DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chem Sci 2020; 11:4351-4359. [PMID: 34122893 PMCID: PMC8152620 DOI: 10.1039/d0sc00442a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 01/31/2023] Open
Abstract
A robust system for automatic processing and assignment of raw 13C and 1H NMR data DP4-AI has been developed and integrated into our computational organic molecule structure elucidation workflow. Starting from a molecular structure with undefined stereochemistry or other structural uncertainty, this system allows for completely automated structure elucidation. Methods for NMR peak picking using objective model selection and algorithms for matching the calculated 13C and 1H NMR shifts to peaks in noisy experimental NMR data were developed. DP4-AI achieved a 60-fold increase in processing speed, and near-elimination of the need for scientist time, when rigorously evaluated using a challenging test set of molecules. DP4-AI represents a leap forward in NMR structure elucidation and a step-change in the functionality of DP4. It enables high-throughput analyses of databases and large sets of molecules, which were previously impossible, and paves the way for the discovery of new structural information through machine learning. This new functionality has been coupled with an intuitive GUI and is available as open-source software at https://github.com/KristapsE/DP4-AI.
Collapse
Affiliation(s)
- Alexander Howarth
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Kristaps Ermanis
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan M Goodman
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
7
|
Shepherd ED, Hallside MS, Sutro JL, Thompson A, Hutchings M, Burton JW. Synthesis of the cyclopentane core of pepluanin A. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang J, Li Z, Zhuo J, Cui Y, Han T, Li C. Tandem Decarboxylative Cyclization/Alkenylation Strategy for Total Syntheses of (+)-Longirabdiol, (−)-Longirabdolactone, and (−)-Effusin. J Am Chem Soc 2019; 141:8372-8380. [DOI: 10.1021/jacs.9b03978] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianpeng Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Zijian Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Junming Zhuo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Cui
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Ting Han
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chao Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|