1
|
Zhang X, Huang L, Zhang Y, Meng F, Dai X, Cheng C, Guo Y, Gao Z. TFA-catalyzed solvent-free dearomative cyanidation of isoquinoline using (Boc) 2O as an acylation agent. Org Biomol Chem 2024. [PMID: 39704403 DOI: 10.1039/d4ob01849d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A TFA-catalyzed dearomative cyanidation of isoquinoline is described, which provides a series of 1-cyanoisoquinolines in high yields under solvent-free conditions. This protocol is operated under mild and environmentally friendly conditions, utilizing readily available and cost-effective starting materials. The reaction features broad functional group compatibility, 100 mmol scale synthesis ability and operational simplicity, making it a significant potential approach for the synthesis of various biologically interesting isoquinolines via α C-cyanation.
Collapse
Affiliation(s)
- Xujin Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.
| | - Lihua Huang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.
| | - Ye Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.
| | - Fanhua Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.
| | - Xiandong Dai
- State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.
| | - Chunru Cheng
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.
| |
Collapse
|
2
|
Hemin-catalyzed controlled oxidative cyanation of secondary amine for the synthesis of α-aminonitriles and α-iminonitriles. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Koszelewski D, Kowalczyk P, Śmigielski P, Samsonowicz-Górski J, Kramkowski K, Wypych A, Szymczak M, Ostaszewski R. Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnik-Fields Reaction. MATERIALS 2022; 15:ma15113846. [PMID: 35683150 PMCID: PMC9182137 DOI: 10.3390/ma15113846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
We reported a new method dealing with the synthesis of novel pharmacologically relevant α-aminophosphonate derivatives via a lipase-catalyzed Kabachnik−Fields reaction with yields of up to 93%. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The developed protocol is applicable to a range of H-phosphites and organic amines, providing a wide substrate scope. A new class of α-aminophosphonate analogues possessing P-chiral centers was also synthesized. The synthesized compounds were characterized on the basis of their antimicrobial activities against E. coli. The impact of the various alkoxy groups on antimicrobial activity was demonstrated. The crucial role of the substituents, located at the aromatic rings in the phenylethyloxy and benzyloxy groups, on the inhibitory action against selected pathogenic E. coli strains was revealed. The observed results are especially important because of increasing resistance of bacteria to various drugs and antibiotics.
Collapse
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.Ś.); (J.S.-G.)
- Correspondence: (D.K.); (P.K.); Tel.: +48-22-3432012 (D.K.); +48-22-765-33-01 (P.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
- Correspondence: (D.K.); (P.K.); Tel.: +48-22-3432012 (D.K.); +48-22-765-33-01 (P.K.)
| | - Paweł Śmigielski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.Ś.); (J.S.-G.)
| | - Jan Samsonowicz-Górski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.Ś.); (J.S.-G.)
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun ul. Wileńska 4, 87-100 Toruń, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of 7 Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Ryszard Ostaszewski
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
4
|
Hore S, Singh RP. Phosphorylation of arenes, heteroarenes, alkenes, carbonyls and imines by dehydrogenative cross-coupling of P(O)-H and P(R)-H. Org Biomol Chem 2021; 20:498-537. [PMID: 34904988 DOI: 10.1039/d1ob02003j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organophosphorous compounds have recently emerged as a powerful class of compounds with widespread applications, such as in bioactive natural products, pharmaceuticals, agrochemicals and organic materials, and as ligands in catalysis. The preparation of these compounds requires synthetic techniques with novel catalytic systems varying from transition metal, photo- and electrochemical catalysis to transformations without metal catalysts. Over the past few decades, the addition of P-H bonds to alkenes, alkynes, arenes, heteroarenes and other unsaturated substrates in hydrophosphination and other related reactions via the above-mentioned catalytic processes has emerged as an atom economical approach to obtain organophosphorus compounds. In most of the catalytic cycles, the P-H bond is cleaved to yield a phosphorus-based radical, which adds onto the unsaturated substrate followed by reduction of the corresponding radical yielding the product.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
5
|
Azhdari A, Azizi N. Design and preparation of HPW-anchored magnetic carbon nitride nanosheets: an efficient and eco-friendly nanocomposite for one-pot synthesis of α-amino phosphonates. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Chen Z, Zheng S, Wang Z, Liao Z, Yuan W. Electron Donor‐Acceptor Complex Enabled Photocyanation of Tertiary Amines with a Stable and User‐Friendly Cyanobenziodoxolone Reagent. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zimin Chen
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Songlin Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Zijie Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Zixuan Liao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Weiming Yuan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| |
Collapse
|
7
|
Batra A, Singh P, Singh KN. Latest Advancements in Transition‐Metal‐Free Carbon‐Heteroatom Bond Formation Reactions
via
Cross‐ Dehydrogenative Coupling. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women, Sec 36/A Chandigarh 160036 India
| | | | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
8
|
Huang Y, Chen Q. Recent Advances in C(sp 3)—H Phosphorylation Based on Secondary Phosphine Oxides and Phosphite Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Ma Y, Xiong R, Feng Y, Zhang X, Xiong Y. Synthesis of 1,2-disubstituted benzimidazoles through DDQ-oxidized intramolecular dehydrogenative coupling of N,N′-dialkyl o-phenylenediamines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Xiong R, Hussain MI, Liu Q, Xia W, Xiong Y. Cross dehydrogenative coupling strategy for allylation of benzylanilines promoted by DDQ. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Yi B, Yan N, Yi N, Xie Y, Wen X, Au CT, Lan D. Oxidative cyanation of N-aryltetrahydroisoquinoline induced by visible light for the synthesis of α-aminonitrile using potassium thiocyanate as a “CN” agent. RSC Adv 2019; 9:29721-29725. [PMID: 35531501 PMCID: PMC9071963 DOI: 10.1039/c9ra06120g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022] Open
Abstract
A novel method for the synthesis of α-aminonitrile, through visible-light-induced oxidative cyanation of N-aryltetrahydroisoquinoline with potassium thiocyanate, has been developed.
Collapse
Affiliation(s)
- Bing Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Ning Yan
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Niannian Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Yanjun Xie
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Xiaoyong Wen
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Chak-Tong Au
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Donghui Lan
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| |
Collapse
|