1
|
Xue L, Yu J, Zhong Y, Chen J, Li C, Yang K, Duchemin N, Hu YJ. Light-induced β-hydroxy sulfone synthesis in DNA-encoded libraries. Chem Commun (Camb) 2024; 60:6885-6888. [PMID: 38888137 DOI: 10.1039/d4cc02193b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We here describe a visible-light photooxidation of sulfinate salts with common alkenes to yield β-hydroxy sulfones on DNA. This process demonstrates a broad substrate compatibility and achieves conversion rates ranging from moderate to excellent. Most importantly, it presents a straightforward, efficient, and metal-free approach for synthesizing Csp3-rich DNA-encoded libraries.
Collapse
Affiliation(s)
- Lijun Xue
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Jiaqing Yu
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Ying Zhong
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Junyun Chen
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Chao Li
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd, 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | - Nicolas Duchemin
- Pharmaron UK, Ltd, Innovation Park, West Cl, Hertford Rd, Hoddesdon EN11 9FH, UK.
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| |
Collapse
|
2
|
Yang B, Federmann P, Warth V, Ren M, Mu X, Wu H, Bäckvall JE. Total Synthesis of Strigolactones via Palladium-Catalyzed Cascade Carbonylative Carbocyclization of Enallenes. Org Lett 2024; 26:4637-4642. [PMID: 38805214 PMCID: PMC11165582 DOI: 10.1021/acs.orglett.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Here we report an efficient route for synthesizing strigolactones (SLs) and their derivatives. Our method relies on a palladium-catalyzed oxidative carbonylation/carbocyclization/carbonylation/alkoxylation cascade reaction, which involves the formation of three new C-C bonds and a new C-O bond while cleaving one C(sp3)-H bond in a single step. With our versatile synthetic strategy, both naturally occurring and artificial SLs were prepared.
Collapse
Affiliation(s)
- Bin Yang
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Patrick Federmann
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Viktoria Warth
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Mingzhe Ren
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xin Mu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haibo Wu
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
3
|
Song Y, Fu C, Zheng J, Ma S. Copper-catalyzed remote double functionalization of allenynes. Chem Sci 2024; 15:7789-7794. [PMID: 38784739 PMCID: PMC11110152 DOI: 10.1039/d4sc00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.
Collapse
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| |
Collapse
|
4
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Nickel-Catalyzed Reductive Cross-Coupling of Propargylic Acetates with Chloro(vinyl)silanes: Access to Silylallenes. J Org Chem 2024; 89:2885-2894. [PMID: 38355424 DOI: 10.1021/acs.joc.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Because of their various reactivities, propargyl acetates are refined chemical intermediates that are extensively applied in pharmaceutical synthesis. Currently, reactions between propargyl acetates and chlorosilanes may be the most effective method for synthesizing silylallenes. Nevertheless, owing to the adaptability and selectivity of substrates, transition metal catalysis is difficult to achieve. Herein, nickel-catalyzed reductive cross-coupling reactions between propargyl acetates and substituted vinyl chlorosilanes for the synthesis of tetrasubstituted silylallenes are described. Therein, metallic zinc is a crucial reductant that effectively enables two electrophilic reagents to selectively construct C(sp2)-Si bonds. Additionally, a Ni-catalyzed reductive mechanism involving a radical process is proposed on the basis of deuteration-labeled experiments.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
5
|
Wei Y, Wang Z, Wang K, Qiu JK, Wang Z, Li H, Duan X, Guo K, Bao X, Wu X. Copper-Catalyzed Radical Allene C(sp 2 )-H Cyanation. Angew Chem Int Ed Engl 2024; 63:e202317132. [PMID: 38038249 DOI: 10.1002/anie.202317132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
While the hydrogen atom abstraction (HAA) from C(sp3 )-H bond has been well explored, the radical-mediated chemo- and regio-selective functionalization of allenic C(sp2 )-H bond via direct HAA from C(sp2 )-H bond of allene remains an unsolved challenge in synthetic chemistry. This is primarily due to inherent challenges with addition of radical intermediates to allenes, regioselectivity of HAA process, instability of allenyl radical toward propargyl radical et al. Herein, we report a copper catalyzed allenic C(sp2 )-H cyanation of an array of tri- and di-substituted allenes with exceptional site-selectivity, while mono-substituted allene was successfully cyanated, albeit with a low yield. In the developed strategy, steric N-fluoro-N-alkylsulfonamide, serving as precursor of hydrogen atom abstractor, plays a crucial role in achieving the desired regioselectivity and avoiding addition of N-centered radical to allene.
Collapse
Affiliation(s)
- Youhao Wei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Zheng Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Kaifeng Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Jiang-Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhaoshan Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Haotian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
6
|
Qin JH, Xiong ZQ, Cheng C, Hu M, Li JH. Electroreductive Carboxylation of Propargylic Acetates with CO 2: Access to Tetrasubstituted 2,3-Allenoates. Org Lett 2023; 25:9176-9180. [PMID: 38113454 DOI: 10.1021/acs.orglett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An electroreductive carboxylation of propargylic alcohols with CO2 and then workup with TMSCHN2 to construct tetrasubstituted 2,3-allenoates is developed. This method allows the incorporation of an external ester group into the resulting allene system through electroreduction, carboxylation, and deacetoxylation cascades. Mechanistically, electricity on/off experiments and cyclic voltammetry analysis support the preferential generation of the CO2 radical anion or the 3-aryl propargylic acetate radical anion based on the electron nature of the aryl rings.
Collapse
Affiliation(s)
- Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chaozhihui Cheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
7
|
Cheng Z, Yang T, Li C, Deng Y, Zhang F, Chen P, Lin Z, Ma S, Liu G. Site-Selective sp 2 C-H Cyanation of Allenes via Copper-Catalyzed Radical Relay. J Am Chem Soc 2023; 145:25995-26002. [PMID: 38011726 DOI: 10.1021/jacs.3c11368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Compared with the extensively reported hydrogen atom transfer (HAT) at sp3 C-H, abstraction of hydrogen atoms at the sp2 carbon is extremely rare. Here, we communicate the site-selective cyanation of the sp2 C-H bond of allenes using the strategy of copper-catalyzed radical relay. The reactions afford various allenyl nitriles directly from simple allenes with a broad substrate scope and a remarkable functional group compatibility under mild conditions. These reactions exhibit excellent site-selectivity toward sp2 C-H, which can be attributed to the unique pocket created by the Cu-bound nitrogen-centered radical. The favorable HAT on sp2 C-H is due to crucial hydrogen bonding between the fluoride bonded to the Cu(II) center and the hydrogen atom at the allylic position. These features enable the late-stage functionalization of druglike bioactive molecules containing an allene motif.
Collapse
Affiliation(s)
- Zhongming Cheng
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunshun Deng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Fangjia Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Zhao K, Liu Q, Cheng S, Zhao Z, Li X. PhI(OAc) 2-Mediated Regioselective Hydrothiolation of Allenamides with Thiophenol via a Radical Process: Synthesis of Vinyl Sulfides. J Org Chem 2023; 88:15626-15638. [PMID: 37885139 DOI: 10.1021/acs.joc.3c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
An efficient PhI(OAc)2-mediated regioselective hydrothiolation of allenamides with thiophenol via a radical process was developed to create a workable route to vinyl sulfides. The reaction exhibits a good functional group tolerance and high efficiency, affording the products in good to excellent yields. Mechanistic investigations indicated that the radical cascade proceeds through an allyl radical intermediate, which is formed via the addition of the PhS radical to the central carbon of allenamides. Moreover, the reaction was also efficient with selenophenol, providing the corresponding product, vinyl selenide, in a 99% yield.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Qingsong Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Song Cheng
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
9
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Cobalt-Promoted Electroreductive Cross-Coupling of Prop-2-yn-1-yl Acetates with Chloro(vinyl)silanes. Org Lett 2023; 25:7263-7267. [PMID: 37756013 DOI: 10.1021/acs.orglett.3c02989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An electroreductive cross-coupling of prop-2-yn-1-yl acetates with chloro(vinyl)silanes for producing tetrasubstituted silylallenes is developed. The method enables the formation of a new C─Si bond through the cathodic reduction formation of the silyl radical, radical addition across the C≡C bond, the alkenyl anion intermediate formation, and deacetoxylation and represents a mild, practical route to the synthesis of silylallenes. Mechanistic studies reveal that CoCl2 acts as the mediator to promote the formation of the alkenyl anion intermediate via electron transfer.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Wu B, Ding QJ, Wang ZL, Zhu R. Alkyne Polymers from Stable Butatriene Homologues: Controlled Radical Polymerization of Vinylidenecyclopropanes. J Am Chem Soc 2023; 145:2045-2051. [PMID: 36688814 DOI: 10.1021/jacs.2c12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Controlled polymerization of cumulenic monomers represents a promising yet underdeveloped strategy toward well-defined alkyne polymers. Here we report a stereoelectronic effect-inspired approach using simple vinylidenecyclopropanes (VDCPs) as butatriene homologues in controlled radical ring-opening polymerizations. While being thermally stable, VDCPs mimic butatrienes via conjugation of the cyclopropane ring. This leads to exclusive terminal-selective propagation that affords a highly structurally regular alkyne-based backbone, featuring complete ring-opening and no backbiting regardless of polymerization conditions.
Collapse
Affiliation(s)
- Bin Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian-Jun Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zheng-Lin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Wang L, Sun J, Xia J, Ma R, Zheng G, Zhang Q. Visible light-mediated NHC and photoredox co-catalyzed 1,2-sulfonylacylation of allenes via acyl and allyl radical cross-coupling. Org Chem Front 2023. [DOI: 10.1039/d2qo01993k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible light-mediated NHC and photoredox co-catalyzed radical 1,2-sulfonylacylation of allenes via cross-coupling between an allyl radical and an NHC-stabilized acyl radical.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiuli Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Ruiyang Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
12
|
Almendros P, Esteban P, Herrera F, San Martín D, Luna A. Regioselectivity Switch Based on the Stoichiometry: Stereoselective Synthesis of Trisubstituted Vinyl Epoxides by Cu‐Catalyzed 3‐exo‐trig Cyclization of α‐Allenols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Li Y, Bao H. Radical transformations for allene synthesis. Chem Sci 2022; 13:8491-8506. [PMID: 35974759 PMCID: PMC9337727 DOI: 10.1039/d2sc02573f] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Allenes are valuable organic molecules that feature unique physical and chemical properties. They are not only often found in natural products, but also act as versatile building blocks for the access of complex molecular targets, such as natural products, pharmaceuticals, and functional materials. Therefore, many remarkable and elegant methodologies have been established for the synthesis of allenes. Recently, more and more methods for radical synthesis of allenes have been developed, clearly emphasizing the associated great synthetic values. In this perspective, we will discuss recent important advances in the synthesis of allenes via radical intermediates by categorizing them into different types of substrates as well as distinct catalytic systems. The mechanistic studies and synthetic challenges will be highlighted.
Collapse
Affiliation(s)
- Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences P. R. of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- University of Chinese Academy of Sciences Beijing 100049 P. R. of China
| |
Collapse
|
14
|
Fan T, Ma X, Liu Y, Jiang C, Xu Y, Chen Y. Visible-Light-Induced Tandem Reaction of Allenes with Selenesulfonates Leading to ( E)-2,3-Disulfonylpropene Derivatives. J Org Chem 2022; 87:5846-5855. [PMID: 35414178 DOI: 10.1021/acs.joc.2c00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-induced tandem reaction of allenes with selenesulfonates was developed, providing (E)-2,3-disulfonylpropene derivatives in moderate to good yields. This reaction was featured with simple operation, good regioselectivity and stereoselectivity, and wide functional group tolerance. Photoinduced radical additions via energy transfer were proposed.
Collapse
Affiliation(s)
- Tao Fan
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Xianli Ma
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan Liu
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Caina Jiang
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanli Xu
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanyan Chen
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
15
|
Sun Q, Deng TY, Chen JJ, Liu JY, Lu X, Zhang ZX, Li JH. Insights into the gold(I)-catalyzed intermolecular annulations of alkynes with N-allenamides: a mechanistic DFT study. Dalton Trans 2022; 51:3734-3739. [PMID: 35166737 DOI: 10.1039/d1dt04028f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of Au(I)-catalyzed intermolecular annulation of 2-(1-alkynyl)-2-alken-1-one with N-allenamide was carefully elucidated using density functional theory (DFT). The reaction is initiated by the binding of the Au(I) catalyst with 2-(1-alkynyl)-2-alken-1-one rather than with N-allenamide. The key intermediate, a gold all-carbon 1,3-dipole species, is revealed to be more reactive than the gold allylic carbocation. The influence of ligands and substituents was rationally analyzed. We believe that our study will provide deeper mechanistic insights into the chemoselective reactions of alkynes with N-allenamide.
Collapse
Affiliation(s)
- Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Tian-Yu Deng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jia-Jie Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jia-Yi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-Xia Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
16
|
Computational study of the boraformylation of allenes catalyzed by copper complexes. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Fan J, Fu C, Wu X, Ma S. Rh-Catalyzed cyclization of 2,3-allenoic acids in the presence of 2,3-allenols. Chem Commun (Camb) 2021; 57:10411-10414. [PMID: 34545862 DOI: 10.1039/d1cc04367f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we report a [Cp*RhCl2]2-catalyzed coupling cyclization of two different classes of allenes with 2,3-allenoic acids affording 2(5H)-furanone skeletons of products and 2,3-allenols forming a conjugated (E)-enal or enone functionality to the β-position of the 2(5H)-furanones. These products are important building blocks for the syntheses of potentially bioactive compounds. The reaction proceeded via the nucleometalation, insertion, and stereodefined 1,4-H delivery carried by rhodium.
Collapse
Affiliation(s)
- Junjie Fan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China
| | - Xiaoyan Wu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
| |
Collapse
|
18
|
Wang Y, Scrivener SG, Zuo XD, Wang R, Palermo PN, Murphy E, Durham AC, Wang YM. Iron-Catalyzed Contrasteric Functionalization of Allenic C(sp 2)-H Bonds: Synthesis of α-Aminoalkyl 1,1-Disubstituted Allenes. J Am Chem Soc 2021; 143:14998-15004. [PMID: 34491051 DOI: 10.1021/jacs.1c07512] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iron-catalyzed C-H functionalization of simple monosubstituted allenes is reported. An efficient protocol for this process was made possible by the use of a newly developed electron-rich and sterically hindered cationic cyclopentadienyliron dicarbonyl complex as the catalyst and N-sulfonyl hemiaminal ether reagents as precursors to iminium ion electrophiles. Under optimized conditions, the use of a mild, functional-group-tolerant base enabled the conversion of a range of monoalkyl allenes to their allenylic sulfonamido 1,1-disubstituted derivatives, a previously unreported and contrasteric regiochemical outcome for the C-H functionalization of electronically unbiased and directing-group-free allenes.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah G Scrivener
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Dong Zuo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Philip N Palermo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ethan Murphy
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Shan QC, Hu LM, Qin W, Hu XH. Copper-Catalyzed Cross-Nucleophile Coupling of β-Allenyl Silanes with Tertiary C-H Bonds: A Radical Approach to Branched 1,3-Dienes. Org Lett 2021; 23:6041-6045. [PMID: 34279969 DOI: 10.1021/acs.orglett.1c02112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Described herein is a distinctive approach to branched 1,3-dienes through oxidative coupling of two nucleophilic substrates, β-allenyl silanes, and hydrocarbons appending latent functionality by copper catalysis. Notably, C(sp3)-H dienylation proceeded in a regiospecific manner, even in the presence of competitive C-H bonds that are capable of occurring hydrogen atom transfer process, such as those located at benzylic and other tertiary sites, or adjacent to an oxygen atom. Control experiments support the intermediacy of functionalized alkyl radicals.
Collapse
Affiliation(s)
- Qi-Chao Shan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lu-Min Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei Qin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Lu WY, You Y, Li TT, Wang ZH, Zhao JQ, Yuan WC. CuI-Catalyzed Decarboxylative Thiolation of Propargylic Cyclic Carbonates/Carbamates to Access Allenyl Thioethers. J Org Chem 2021; 86:6711-6720. [PMID: 33844530 DOI: 10.1021/acs.joc.1c00453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first CuI-catalyzed decarboxylative thiolation of terminal alkyne-substituted cyclic carbonates/carbamates to access allenes has been developed. A wide range of hydroxymethyl- and aminomethyl-containing allenyl thioethers were smoothly obtained in good to excellent yields under mild conditions. The copper-allenylidene intermediate among the process is crucial to the decarboxylative thiolation reaction. This method opens up a new channel to access allenyl thioether compounds.
Collapse
Affiliation(s)
- Wen-Ya Lu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Qian ZM, Zuo KL, Guan Z, He YH. Visible-light-induced sequential sulfonylation/hydroxylation of allylacetamides leading to β-tert-hydroxy sulfones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Tsuda M, Morita T, Fukuhara S, Nakamura H. Synthesis of 4-amino-5-allenylisoxazoles via gold(I)-catalysed propargyl aza-Claisen rearrangement. Org Biomol Chem 2021; 19:1358-1364. [PMID: 33475653 DOI: 10.1039/d0ob02544e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Propargyl aza-Claisen rearrangement of 4-propargylaminoisoxazoles 1 proceeded in the presence of cationic gold(i) catalysts to give 4-amino-5-allenylisoxazoles 2 in good to high yields. The silyl group at the terminal alkyne and a cationic gold(i) catalyst bearing a sterically bulky ligand are essential for the generation of isolable allene intermediates. The N-protection of the generated 4-amino-5-allenylisoxazoles 2 allowed the isolation of 5-allenylisoxazoles 4 that have never been synthesized. N-Propargyl aniline 5 was successfully converted to the corresponding ortho-allenyl aniline 6 under the current reaction conditions.
Collapse
Affiliation(s)
- Masato Tsuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan. and School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Taiki Morita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| | - Shintaro Fukuhara
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan. and School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| |
Collapse
|
23
|
Abstract
This review summarizes the visible light mediated strategies for the functionalization of allenes.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
24
|
Pei G, Chen H, Xu W, Chen T, Li J. Diboron-controlled product selectivity switch in copper-catalyzed decarboxylative substitutions of alkynyl cyclic carbonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01411k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DFT calculations were performed to explore the mechanisms, origins of diboron-controlled divergent product selectivity and stereoselectivity in the copper-catalyzed decarboxylative substitution of alkynyl cyclic carbonates.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hui Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wan Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Juan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
25
|
Scollon M, Percival PW. Free Radicals Formed by H Atom Addition to Allenes as Determined by Muon Spin Spectroscopy. J Phys Chem A 2020; 124:11086-11092. [DOI: 10.1021/acs.jpca.0c09777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myles Scollon
- Department of Chemistry and TRIUMF, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Paul W. Percival
- Department of Chemistry and TRIUMF, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
26
|
Liu L, Ward RM, Schomaker JM. Regioselective Intramolecular Allene Amidation Enabled by an EDA Complex*. Chemistry 2020; 26:13783-13787. [PMID: 32449968 DOI: 10.1002/chem.202002533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 12/18/2022]
Abstract
The addition of radicals to unsaturated precursors is a powerful tool for the synthesis of both carbo- and heterocyclic organic building blocks. The recent advent of mild ways to generate N-centered radicals has reignited interest in exploiting highly regio-, chemo-, and stereoselective transformations that employ these reactive intermediates. While the additions of aminyl, iminyl, and amidyl radicals to alkenes and alkynes have been well-studied, analogous additions to allenes are scarce. Allenes offer several attractive features, including potential for selective amidation at three distinct sites via judicious choice of precursor or radical source, the opportunity for axial-to-point chirality transfer, and productive trapping of vinyl or allyl radical intermediates to diversify functionality in the products. In this article, we report a regioselective addition of amidyl radicals to allenes to furnish an array of valuable N-heterocycle scaffolds.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Robert M Ward
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
27
|
Sun X, Liu T, Yang Y, Gu Y, Liu Y, Ji Y, Luo K, Zhu J, Wu L. Visible‐Light‐Promoted Regio‐ and Stereoselective Oxyalkenyl‐ation of Phosphinyl Allenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Sun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Teng Liu
- College of Chemistry and Material ScienceShandong Agricultural University, Taian Shandong 271018 People's Republic of China
| | - Yan‐Tong Yang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yue‐Jie Gu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yu‐Wei Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yi‐Gang Ji
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and ChemistryJiangsu Second Normal University Nanjing 210013 People's Republic of China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
28
|
Guo K, Kleij AW. Cu-Catalyzed Synthesis of Tetrasubstituted 2,3-Allenols through Decarboxylative Silylation of Alkyne-Substituted Cyclic Carbonates. Org Lett 2020; 22:3942-3945. [PMID: 32338521 DOI: 10.1021/acs.orglett.0c01222] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An efficient and mild Cu-catalyzed protocol has been developed for the decarboxylative silylation of alkyne-functionalized cyclic carbonate substrates affording 2,3-allenols featuring four different substituents. This practical methodology gives access to a wide scope of tetrasubstituted functionalized allenes in excellent yields.
Collapse
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
29
|
Zhang ZB, Yang Y, Yu ZX, Xia JB. Lewis Base-Catalyzed Amino-Acylation of Arylallenes via C–N Bond Cleavage: Reaction Development and Mechanistic Studies. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zheng-Bing Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Yuan X, Tan X, Ding N, Liu Y, Li X, Zhao Z. NIS-promoted intermolecular bis-sulfenylation of allenamides via a two-step radical process: synthesis of 1,3-dithioethers. Org Chem Front 2020. [DOI: 10.1039/d0qo00690d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first report of NIS-promoted two-step radical addition of thiols to allenamides to provide an efficient route for accessing 1,3-dithioethers.
Collapse
Affiliation(s)
- Xiao Yuan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Xiaoju Tan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Na Ding
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Yongchun Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| |
Collapse
|
31
|
Liu L, Ward RM, Schomaker JM. Mechanistic Aspects and Synthetic Applications of Radical Additions to Allenes. Chem Rev 2019; 119:12422-12490. [PMID: 31833759 DOI: 10.1021/acs.chemrev.9b00312] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
More than 50 years have passed since Haszeldine reported the first addition of a trifluoromethyl radical to an allene; in the intervening years, both the chemistry of allenes and the reactivity of single-electron species have become topics of intense interest. In this Review, we provide an overview of the fundamentals of radical additions to allenes and highlight the emergence of theoretical and experimental evidence that reveals unique reactivity patterns for radical additions to allenes as compared with other unsaturated compounds. Factors capable of exerting control over the chemo-, regio-, and stereoselectivities of the attack of carbon- and heteroatom-based radicals at each of the three potential reactive sites in an allene substrate are described. These include reaction conditions, the nature of the attacking radical, the substitution pattern of the allene, and the length of the linker between the radical center and the proximal allene carbon in the substrate. Cycloaddition reactions between allenes and partners containing π-bonds, which are likely to proceed through radical pathways, are presented to highlight their ability to rapidly access complex polycyclic scaffolds. Finally, the synthetic utility of the products arising from these chemistries is described, including their applications to the construction of complex molecules.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Robert M Ward
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Jennifer M Schomaker
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
32
|
Perego LA, Bonilla P, Melchiorre P. Photo‐Organocatalytic Enantioselective Radical Cascade Enabled by Single‐Electron Transfer Activation of Allenes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luca Alessandro Perego
- ICIQ – Institute of Chemical Research of Cataloniathe Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Pablo Bonilla
- ICIQ – Institute of Chemical Research of Cataloniathe Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICIQ – Institute of Chemical Research of Cataloniathe Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
- ICREA– Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
33
|
Abstract
So far, over 150 natural products and pharmaceuticals containing an allene moiety have been identified. During the last two decades, allenes have also been demonstrated as synthetically versatile starting materials in organic synthesis. In comparison to alkenes and alkynes, allenes are unique unsaturated hydrocarbons due to their axial chirality, which could be transformed to central chirality via chirality transfer to provide an irreplaceable entry to chiral molecules. Thus, methods for allene synthesis from readily available chemicals are of great interest. In 1979, Crabbé et al. reported the first CuBr-mediated allenation of terminal alkynes (ATA) reaction to form monosubstituted allenes from 1-alkynes and paraformaldehyde in the presence of diisopropylamine. During the following 30 years, the ATA reactions were limited to paraformaldehyde. This Account describes our efforts toward the development of ATA reactions in the last ten years. First, we improved the yields and scope greatly for the synthesis of monosubstituted allenes by modifying the original Crabbé recipe. Next we developed the ZnI2-promoted or CuI-catalyzed ATA reactions for the synthesis of 1,3-disubstituted allenes from terminal alkyne and normal aldehydes. Furthermore, we first realized the CdI2-promoted ATA reaction of ketones with pyrrolidine as the matched amine for the preparation of trisubstituted allenes. Due to the toxicity of CdI2, we also developed two alternative approaches utilizing CuBr/ZnI2 or CuI/ZnBr2/Ti(OEt)4. The asymmetric version of ATA reactions for the synthesis of optically active 1,3-disubstituted allenes has also been achieved in this group with two strategies. One is called "chiral ligand" strategy, using terminal alkynes, aldehydes, and nonchiral amine with the assistance of a proper chiral ligand. The other is the "chiral amine" strategy, applying terminal alkynes, aldehydes, and chiral amines such as ( S)- or ( R)-α,α-diphenylprolinol or ( S)- or ( R)-α,α-dimethylprolinol. Optically active 1,3-disubstituted allenes containing different synthetically useful functionalities such as alcohol, amide, sulfamide, malonate, carboxylate, and carbohydrate units could be prepared without protection with the newly developed CuBr2-catalyzed chiral amine strategy. Recently, we have applied these enantioselective allenation of terminal alkyne (EATA) reactions to the syntheses of some natural allenes such as laballenic acid, insect pheromone, methyl ( R)-8-hydroxyocta-5,6-dienoate, phlomic acid, and lamenallenic acid, as well as some non-allene natural γ-butyrolactones such as xestospongienes (E, F, G, and H), ( R)-4-tetradecalactone, ( S)-4-tetradecalactone, ( R)-γ-palmitolactone, and ( R)-4-decalactone.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
34
|
Zhang J, Xie W, Ye S, Wu J. Synthesis of β-hydroxysulfones through a copper(ii)-catalyzed multicomponent reaction with the insertion of sulfur dioxide. Org Chem Front 2019. [DOI: 10.1039/c9qo00520j] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A copper(ii)-catalyzed aerobic oxidative reaction of arylhydrazines, DABCO·(SO2)2 and alkenes is reported. Diverse β-hydroxysulfones are generated in moderate to good yields through the hydroxysulfonylation of alkenes with the insertion of sulfur dioxide under mild conditions. In some cases, β-ketosulfones are produced.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- Department of Chemistry
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- Department of Chemistry
| |
Collapse
|