1
|
Peng PK, Isho A, May JA. Regio- and enantioselective synthesis of acyclic quaternary carbons via organocatalytic addition of organoborates to (Z)-Enediketones. Nat Commun 2024; 15:504. [PMID: 38218961 PMCID: PMC10787796 DOI: 10.1038/s41467-024-44744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
The chemical synthesis of molecules with closely packed atoms having their bond coordination saturated is a challenge to synthetic chemists, especially when three-dimensional control is required. The organocatalyzed asymmetric synthesis of acyclic alkenylated, alkynylated and heteroarylated quaternary carbon stereocenters via 1,4-conjugate addition is here catalyzed by 3,3´-bisperfluorotoluyl-BINOL. The highly useful products (31 examples) are produced in up to 99% yield and 97:3 er using enediketone substrates and potassium trifluoroorganoborate nucleophiles. In addition, mechanistic experiments show that the (Z)-isomer is the reactive form, ketone rotation at the site of bond formation is needed for enantioselectivity, and quaternary carbon formation is favored over tertiary. Density functional theory-based calculations show that reactivity and selectivity depend on a key n→π* donation by the unbound ketone's oxygen lone pair to the boronate-coordinated ketone in a 5-exo-trig cyclic ouroboros transition state. Transformations of the conjugate addition products to key quaternary carbon-bearing synthetic building blocks proceed in good yield.
Collapse
Affiliation(s)
- Po-Kai Peng
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Andrew Isho
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
2
|
Donald KJ, Gaillard UR, Walker N. On Neutral Unsaturated Ouroboric Borylenes. J Phys Chem A 2022; 126:5173-5185. [PMID: 35905394 DOI: 10.1021/acs.jpca.2c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The search is on for stable isolated borylenes. Potential roles in modern synthetic chemistry for boron analogues of carbenes continue to motivate interest in locating them. Using density functional and ab initio methods, we posit and examine the thermochemistry, and chemical bonding, including aromaticity, of several classes of 5- and 6-membered borylenic rings. In these systems, cyclization relies on dative bonding (ouroboric coordination) and π donation to a monovalent boron center from an adjacent O center. Certain neutral five-membered rings (heterocyclic cyclopentadienyl analogues) in particular are found to exhibit exceptionally strong preferences for the singlet multiplicity, each with singlet-triplet (S-T) gaps in excess of 40 kcal·mol-1. The singlet five-membered rings with the largest S-T gaps and some of the six-membered rings show evidence of weak aromaticity. Relationships of the form N = A·r-b, in line with Gordy's and other functions linking bond order, N, and covalent bond length, are identified for dative B←O contacts, r, reinforced in rings by π-delocalization.
Collapse
Affiliation(s)
- Kelling J Donald
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Ulrick R Gaillard
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Noah Walker
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| |
Collapse
|
3
|
Liu N, Li Q, Scheiner S, Xie X. Resonance-assisted intramolecular triel bonds. Phys Chem Chem Phys 2022; 24:15015-15024. [PMID: 35695162 DOI: 10.1039/d2cp01244h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The possibility that the intramolecular Tr⋯S triel bond is strengthened by resonance is examined by quantum chemical calculations within the planar five-membered ring of TrH2-CRCR-CRS (Tr = Al, Ga, In; R = NO2, CH3). This internal bond is found to be rather short (2.4-2.7 Å) with a large bond energy between 12 and 21 kcal mol-1. The pattern of bond length alternation and atomic charges within the ring is consistent with resonance involving the conjugated double bonds. This resonance enhances the triel bond strength by some 25%. The electron-withdrawing NO2 group weakens the bond, but it is strengthened by the electron-donating CH3 substituent. NICS analysis suggests the presence of a certain degree of aromaticity within the ring.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| | - Xiaoying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
4
|
Vénosová B, Koziskova J, Kožíšek J, Herich P, Lušpai K, Petricek V, Hartung J, Müller M, Hübschle CB, van Smaalen S, Bucinsky L. Charge density of 4-methyl-3-[(tetrahydro-2H-pyran-2-yl)oxy]thiazole-2(3H)-thione. A comprehensive multipole refinement, maximum entropy method and density functional theory study. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:450-468. [PMID: 32831263 DOI: 10.1107/s2052520620005533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The structure of 4-methyl-3-[(tetrahydro-2H-pyran-2-yl)oxy]thiazole-2(3H)-thione (MTTOTHP) was investigated using X-ray diffraction and computational chemistry methods for determining properties of the nitrogen-oxygen bond, which is the least stable entity upon photochemical excitation. Experimentally measured structure factors have been used to determine and characterize charge density via the multipole model (MM) and the maximum entropy method (MEM). Theoretical investigation of the electron density and the electronic structure has been performed in the finite basis set density functional theory (DFT) framework. Quantum Theory of Atoms In Molecules (QTAIM), deformation densities and Laplacians maps have been used to compare theoretical and experimental results. MM experimental results and predictions from theory differ with respect to the sign and/or magnitude of the Laplacian at the N-O bond critical point (BCP), depending on the treatment of n values of the MM radial functions. Such Laplacian differences in the N-O bond case are discussed with respect to a lack of flexibility in the MM radial functions also reported by Rykounov et al. [Acta Cryst. (2011), B67, 425-436]. BCP Hessian eigenvalues show qualitatively matching results between MM and DFT. In addition, the theoretical analysis used domain-averaged fermi holes (DAFH), natural bond orbital (NBO) analysis and localized (LOC) orbitals to characterize the N-O bond as a single σ bond with marginal π character. Hirshfeld atom refinement (HAR) has been employed to compare to the MM refinement results and/or neutron dataset C-H bond lengths and to crystal or single molecule geometry optimizations, including considerations of anisotropy of H atoms. Our findings help to understand properties of molecules like MTTOTHP as progenitors of free oxygen radicals.
Collapse
Affiliation(s)
- Barbora Vénosová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University of Technology in Bratislava, Radlinského 9, Bratislava, SK-81237, Slovak Republic
| | - Julia Koziskova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University of Technology in Bratislava, Radlinského 9, Bratislava, SK-81237, Slovak Republic
| | - Jozef Kožíšek
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University of Technology in Bratislava, Radlinského 9, Bratislava, SK-81237, Slovak Republic
| | - Peter Herich
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University of Technology in Bratislava, Radlinského 9, Bratislava, SK-81237, Slovak Republic
| | - Karol Lušpai
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University of Technology in Bratislava, Radlinského 9, Bratislava, SK-81237, Slovak Republic
| | - Vaclav Petricek
- Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Praha 8, 182 21, Czech Republic
| | - Jens Hartung
- Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, D-67663, Germany
| | - Mike Müller
- Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, D-67663, Germany
| | - Christian B Hübschle
- Laboratory of Crystallography, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | - Sander van Smaalen
- Laboratory of Crystallography, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University of Technology in Bratislava, Radlinského 9, Bratislava, SK-81237, Slovak Republic
| |
Collapse
|
5
|
Báez-Grez R, Inostroza D, García V, Vásquez-Espinal A, Donald KJ, Tiznado W. Aromatic ouroboroi: heterocycles involving a σ-donor-acceptor bond and 4n + 2 π-electrons. Phys Chem Chem Phys 2020; 22:1826-1832. [PMID: 31829390 DOI: 10.1039/c9cp05071j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aromaticity and dynamics of a set of recently proposed neutral 5- and 6-membered heterocycles that are closed by dative (donor-acceptor) or multi-center σ bonds, and have resonance forms with a Hückel number of π-electrons, are examined. The donors and acceptors in the rings include N, O, and F, and B, Be, and Mg, respectively. The planar geometry of the rings, coupled with evidence from different measures of aromaticity, namely the NICSzz, and NICSπzz components of the conventional nucleus independent chemical shifts (NICS), and ring current strengths (RCS), indicate non-trivial degrees of aromaticity in certain cases, including the cyclic C3B2OH6 and C3BOH5 isomers, both with three bonds to the O site in the ring. The former is lower in energy by at least 17.6 kcal mol-1 relative to linear alternatives obtained from molecular dynamics simulations in this work. Some of the other systems examined are best described as non-aromatic. Ring opening, closing, and isomerization are observed in molecular dynamics simulations for some of the systems studied. In a few cases, the ring indeed persists.
Collapse
Affiliation(s)
- Rodrigo Báez-Grez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|