1
|
Racochote S, Naweephattana P, Surawatanawong P, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. Base-catalyzed diastereodivergent thia-Michael addition to chiral β-trifluoromethyl-α,β-unsaturated N-acylated oxazolidin-2-ones. Org Biomol Chem 2023; 21:7180-7187. [PMID: 37624045 DOI: 10.1039/d3ob00999h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Base-catalyzed diastereodivergent thia-Michael addition of thiols to chiral β-trifluoromethyl-α,β-unsaturated N-acylated oxazolidin-2-ones is reported. By tuning the base-catalyst (i-Pr2NEt, DABCO, or P2-t-Bu), a range of chiral thia-Michael adducts was synthesized in good yields with high diastereoselectivities. A plausible mechanism was proposed on the basis of the experimental results. This work is complementary to the existing methods offering advantages, e.g., switchable diastereoselectivity using a readily synthesized chiral starting material, a cheap and readily available base catalyst, and a simple and practical operation, enabling synthetic application in organic synthesis.
Collapse
Affiliation(s)
- Sasirome Racochote
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Phiphob Naweephattana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Momo PB, Mizobuchi EF, Echemendía R, Baddeley I, Grayson MN, Burtoloso ACB. Organocatalytic Enantioselective Sulfa-Michael Additions to α,β-Unsaturated Diazoketones. J Org Chem 2022; 87:3482-3490. [PMID: 35179890 DOI: 10.1021/acs.joc.1c03045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantioselective sulfa-Michael additions to α,β unsaturated diazocarbonyl compounds have been developed. Quinine-derived squaramide was found to be the best catalyst to promote C-S bond formation in a highly stereoselective fashion for alkyl and aryl thiols. The easy-to-follow protocol allowed the preparation of 22 examples in enantiomeric ratios up to 97:3 and reaction yields up to 94%. The mechanism and origins of enantioselectivity were determined through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Patricia B Momo
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Eduardo F Mizobuchi
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Isabel Baddeley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew N Grayson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| |
Collapse
|
3
|
Zhang Y, Guo J, Han J, Zhou X, Cao W, Fu Z. Bifunctional squaramide catalyzed asymmetric synthesis of chiral α-mercaptosilanes. Org Biomol Chem 2021; 19:6412-6416. [PMID: 34235529 DOI: 10.1039/d1ob00981h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional squaramide-catalyzed nucleophilic addition of thiophenols to easily available β-silyl α,β-unsaturated carbonyl compounds has been successfully developed. A structurally diverse set of chiral α-mercaptosilanes was efficiently prepared in good to excellent yields with acceptable enantioselectivities. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinna Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
4
|
Liu L, Wang Z, Gao C, Dai H, Si X, Zhang Y, Meng Y, Zheng J, Ke Y, Liu H, Zhang Q. Design, synthesis and antitumor activity evaluation of trifluoromethyl-substituted pyrimidine derivatives. Bioorg Med Chem Lett 2021; 51:128268. [PMID: 34302974 DOI: 10.1016/j.bmcl.2021.128268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In order to find efficient new antitumor drugs, a series of novel trifluoromethyl-substituted pyrimidine derivatives were designed and synthesized, and the bioactivity against four human tumor cells (PC-3, MGC-803, MCF-7 and H1975) was evaluated by MTT assay. Compound 17v displayed potent anti-proliferative activity on H1975 (IC50=2.27 μΜ), which was better than the positive control 5-FU (IC50=9.37 μΜ). Further biological evaluation studies showed that compound 17v induced apoptosis of H1975 cells and arrested the cell cycle at G2/M phase. Furthermore, compound 17v induced H1975 cells apoptosis through increasing the expression of pro-apoptotic proteins Bax and p53 and down-regulating the anti-apoptotic protein Bcl-2. In addition, compound 17v was able to be tightly embedded in the active pocket of EGFR. In summary, these results demonstrated that compound 17v has a potential as a lead compound for further investigation.
Collapse
Affiliation(s)
- Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
| | - Honglin Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
| | - Yang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
| | - Yaqi Meng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001.
| |
Collapse
|
5
|
Chaudhary B, Kulkarni N, Saiyed N, Chaurasia M, Desai S, Potkule S, Sharma S. β
‐Trifluoromethyl
α
,
β
‐unsaturated Ketones: Efficient Building Blocks for Diverse Trifluoromethylated Molecules. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bharatkumar Chaudhary
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Nehanaz Saiyed
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Meenakshi Chaurasia
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Surbhi Desai
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Sagar Potkule
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Satyasheel Sharma
- Department of Natural Products National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| |
Collapse
|
6
|
Li L, Yang T, Zhang T, Zhu B, Chang J. Organocatalytic Asymmetric Tandem Cyclization/Michael Addition via Oxazol-5(2 H)-One Formation: Access to Perfluoroalkyl-Containing N, O-Acetal Derivatives. J Org Chem 2020; 85:12294-12303. [PMID: 32893624 DOI: 10.1021/acs.joc.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a convenient organocatalytic asymmetric tandem cyclization/Michael addition protocol for the synthesis of diastereomerically pure and highly enantioenriched perfluoroalkyl-containing N,O-acetal derivatives starting from racemic N-perfluoroacyl amino acids under mild conditions. This efficient atom economic reaction leads to highly enantioselective and diastereoselective construction of N,O-acetal derivatives containing oxazolone and perfluoroalkyl moieties containing vicinal quaternary and tertiary stereocenters (up to 97% yield, up to 96% ee, and up to >20:1 dr).
Collapse
Affiliation(s)
- Luyao Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tianxiao Yang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tao Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
7
|
Song Q, Zhang P, Liang S, Chen X, Li P, Li W. Organocatalytic Regio- and Enantioselective 1,8-Additions of Nitrogen and Sulfur Nucleophiles to 6-Methylene-6H-indoles. Org Lett 2020; 22:7859-7863. [DOI: 10.1021/acs.orglett.0c02769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qianqian Song
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Pei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, SUSTech, Shenzhen 518055, China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| |
Collapse
|
8
|
Chen H, Jiang W, Zeng Q. Recent Advances in Synthesis of Chiral Thioethers. CHEM REC 2020; 20:1269-1296. [PMID: 32930488 DOI: 10.1002/tcr.202000084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Chiral thioethers is an important class of organosulfur molecules with extensive applications, especially in the field of medicine and organic synthesis. This review discusses the recent progress of synthesis of enantioenriched chiral thioethers and hopes to be helpful for related research in the future. It is summarized from organosulfur compounds-participating organic reaction types, including nucleophilic substitution, cross coupling, sulfa-Michael addition, sulfenylation, asymmetric allylic reaction, asymmetric Doyle-Kirmse reaction, Pummerer-type rearrangement, Smiles rearrangement,[2,3] Stevens and Sommelet-Hauser rearrangement.
Collapse
Affiliation(s)
- Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Wenlong Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| |
Collapse
|
9
|
Xu X, He Y, Zhou J, Li X, Zhu B, Chang J. Organocatalytic Asymmetric Michael Addition of Pyrazol-5-ones to β-Trifluoromethyl-α,β-unsaturated Ketones: Stereocontrolled Construction of Vicinal Quaternary and Tertiary Stereocenters. J Org Chem 2019; 85:574-584. [DOI: 10.1021/acs.joc.9b02676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyao Xu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanmin He
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jingqi Zhou
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xinjuan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|